
www.manaraa.com

Understanding and Improving
Object-Oriented Software

Through
Static Software Analysis

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Doctor of Philosophy in Computer Science

in the

University of Canterbury

by

Warwick Irwin

University of Canterbury

2007

www.manaraa.com

www.manaraa.com

Contents

List of figures...v

Abstract.. viii

1 Introduction...1
1.1 Overview ..1
1.2 Understanding software ...2
1.3 Static analysis...4
1.4 Outline of thesis ...7

2 Existing static analysis technology..8
2.1 The phases of static analysis..8

2.1.1 An example of static analysis phases ..11
2.2 Conventional parser development ...15
2.3 Semantic modelling of software ..22

2.3.1 Reflection ...24
2.3.2 Alternative models...26

2.4 Informing software engineers ..33
2.4.1 Software measurement ..34
2.4.2 Software visualisation..38

3 Parsing background ...41
3.1 Parsing concepts and terminology...42
3.2 Grammar classes and parsing algorithms..46

3.2.1 Context free grammars and others ..46
3.2.2 General and restricted context free parsers ...48
3.2.3 LL parsers ..50
3.2.4 LR parsers ..52

3.3 LR parser classes—an escalating example..56
3.3.1 LL(1) parsing ...57
3.3.2 LL(1) parsing using automata ...59
3.3.3 LR(0) parsing ...61
3.3.4 SLR(1) parsing...69
3.3.5 LALR(1) parsing..72
3.3.6 LR(1) parsing ...74
3.3.7 GLR parsing...77
3.3.8 Dotted items ...80

3.4 Chapter summary ...81

4 Yakyacc: Yet another kind of yacc...82
4.1 Yet another parser generator?..82
4.2 Yakyacc architecture..85

4.2.1 Input of grammars..87

www.manaraa.com

iv

4.2.2 Output of parsers ...89
4.3 Yakyacc design ..90

4.3.1 Runtime PDA ..90
4.3.2 PDA construction ..108

4.4 Discussion ..122
4.4.1 GLR parsing...122
4.4.2 GLR-based sub-sentence parsing..124
4.4.3 Hybrid parsing algorithms...125
4.4.4 Heterogeneous k ..126

4.5 Evaluation ..126
4.6 Chapter summary...128

5 JST: Semantic modelling of Java code ..129
5.1 Why Java? ..131
5.2 The type system of Java...132
5.3 Development approach ..133
5.4 JST architecture ...135
5.5 JST model ..136

5.5.1 Main classes...141
5.5.2 Types..144
5.5.3 Typed Declarations..145
5.5.4 Executable classes ...146

5.6 Populating the model ...147
5.7 Emitting the model...149
5.8 Discussion ..150

5.8.1 Strengths ..150
5.8.2 Weaknesses and limitations ..152
5.8.3 Extensions..153

6 Measuring and visualising Java programs ...154
6.1 The role of metrics and visualisations...156
6.2 Pipeline architecture ..164
6.3 Metrics calculation...168

6.3.1 CodeRank...171
6.4 Generating virtual world visualisations...176

6.4.1 Class Clusters...181
6.4.2 Other applications..183

7 Conclusions and future work..184
7.1 Conclusions..184
7.2 Continuing and future work...186
7.3 Final words...188

Acknowledgments...190

References..191

www.manaraa.com

v

List of figures

Figure Page

Figure 1: Static analysis phases..8
Figure 2: Combined semantic analysis ..10
Figure 3: A simple Java program ...11
Figure 4: Tokens produced by a scanner..11
Figure 5: Parse tree fragment produced by a parser ..13
Figure 6: Semantic model fragment produced by a semantic analyser...........................14
Figure 7: Manual and automatic parser development..16
Figure 8: Java reflection semantic model classes ..25
Figure 9: JDT core model interfaces (simplified)..28
Figure 10: JDT AST classes (simplified)...29
Figure 11: JDT binding classes (simplified) ..31
Figure 12: Fragment of Java exposition grammar ...42
Figure 13: Raw text grammar fragment ...43
Figure 14: EBNF grammar rule expanded to BNF..44
Figure 15: Hierarchy of LR grammar classes ..54
Figure 16: A grammar for a trivial language, and some sentences it generates57
Figure 17: Example sentences and parse trees...57
Figure 18: A recursive grammar and example sentence..57
Figure 19: Example parse tree for recursive grammar ..58
Figure 20: A recursive descent parser ..58
Figure 21: Recursive descent deterministic finite automata..60
Figure 22: Grammar modified to defeat LL(1) parser...61
Figure 23: Grammar modified to defeat LL(k) parser...62
Figure 24: Combining LL automata into a nondeterministic PDA.................................62
Figure 25: LR(0) Pushdown Automaton..63
Figure 26: Execution of PDA...64
Figure 27: Partially constructed LR(0) parser for grammar with nested parentheses66
Figure 28: LR(0) PDA with ε-transitions removed ...67
Figure 29: Deterministic LR(0) PDA...68
Figure 30: Execution of PDA as it parses nested parentheses...69
Figure 31: Grammar modified to require an SLR(1) parser..69
Figure 32: Nondeterministic LR(0) PDA for grammar with methodCall.......................70
Figure 33: LR(0) state containing a reduce-reduce conflict ..70
Figure 34: LR(1) state that eliminates the conflict ..70
Figure 35: Deterministic SLR(1) PDA for grammar with methodCall...........................71
Figure 36: A grammar that produces an LR(0) shift-reduce conflict, and its

 resolution in an SLR(1) PDA fragment..72
Figure 37: Grammar modified to require an LALR(1) parser...72
Figure 38: SLR(1) PDA fragment with inadequate state ..73
Figure 39: LALR(1) PDA ..73
Figure 40: Grammar modified to require an LR(1)parser ...74

www.manaraa.com

vi

Figure 41: Nondeterministic LALR(1) PDA (ε−transitions removed)........................... 74
Figure 42: Reduce-reduce conflict reachable from two sources 75
Figure 43: Inadequate LALR(1) state .. 75
Figure 44: LR(1) PDA fragment .. 75
Figure 45: LR(1) PDA.. 76
Figure 46: Grammar modified to require a GLR parser.. 77
Figure 47: Inadequate LR(1) PDA... 77
Figure 48: Execution of PDA with branching stack.. 79
Figure 49: Graph-structured stack configuration... 80
Figure 50: Dotted items derived from super rule... 80
Figure 51: Decoupled architecture of yakyacc .. 85
Figure 52: Generating a parser for use in a pipeline.. 86
Figure 53: Potential mechanism for custom parser actions... 87
Figure 54: Alternative grammar specifications using BNF and EBNF 88
Figure 55: Using yakyacc to generate bnf2xml... 89
Figure 56: Parser generation using a stylesheet... 89
Figure 57: Runtime package structure ... 91
Figure 58: Grammar classes... 92
Figure 59: Parse tree classes... 94
Figure 60: Parse trees for recursive grammar... 95
Figure 61: Token factory classes.. 96
Figure 62: Tree factory classes... 96
Figure 63: Parse tree visitors .. 97
Figure 64: PDA base classes .. 97
Figure 65: The parse() method of Parser .. 98
Figure 66: Table-driven parsers ... 99
Figure 67: The step() method of SimpleParser.. 100
Figure 68: Rekers’ algorithm ... 101
Figure 69: Graph-driven parsers .. 103
Figure 70: The step() method of DeterministicParser ... 103
Figure 71: The step() method of NondeterministicParser 103
Figure 72: The shift() and goTo() methods of DeterministicParser.................. 104
Figure 73: The shift() and goTo() methods of NondeterministicParser 104
Figure 74: Graph-driven parser stacks ... 105
Figure 75: Classes for Token input .. 106
Figure 76: State machine classes.. 107
Figure 77: State machine builder ... 108
Figure 78: Parser generator package structure... 109
Figure 79: Yakyacc grammar classes... 109
Figure 80: KParser... 110
Figure 81: PopNode construction ... 111
Figure 82: Transmogrifier classes.. 111
Figure 83: Major Transmogrifier methods .. 112
Figure 84: Priming Transmogrifiers with different PopNodes 112
Figure 85: PDAMaker... 113
Figure 86: Escalating parser construction.. 113
Figure 87: The split() method of LRTransmogrifier.. 114
Figure 88: The prune() method of Transmogrifier... 115
Figure 89: TransmogrifierGSSNode hierarchy ... 116

www.manaraa.com

vii

Figure 90: The split() method of LRPopNode ..117
Figure 91: The partition() method of LRPopNode ...117
Figure 92: Splitting constructor of LRPopNode..118
Figure 93: Parse trees that calculate lookahead ...119
Figure 94: Dynamic state machine classes ..121
Figure 95: JST overview class diagram ...140
Figure 96: Main JST classes...141
Figure 97: Scope and Decl classes ..142
Figure 98: Example name look-up rules ..142
Figure 99: PackageDecl and SourceFile ..143
Figure 100: TypeDecl and its subclasses...144
Figure 101: Method invocation resolution...145
Figure 102: TypedDecl and subclasses..146
Figure 103: ExecutableCode and its subclasses...147
Figure 104: ModelVisitor hierarchy ..149
Figure 105: JST memory usage..151
Figure 106: Code age editor ...160
Figure 107: SeeSoftLike...161
Figure 108: Pipeline input and output ..164
Figure 109: Pipeline example...166
Figure 110: Pipeline XML files..167
Figure 111: Number of methods visitor ...170
Figure 112: CodeRanker...173
Figure 113: ClassRank parallel coordinates graph ..173
Figure 114: Aliens program metrics...174
Figure 115: Visualisation filters in the pipeline...177
Figure 116: Class cohesion variations..178
Figure 117: Separable class ..179
Figure 118: Real class cohesion ...179
Figure 119: VRML browser ...180
Figure 120: Magic book ...180
Figure 121: VT CAVE (console) ...180
Figure 122: UC GeoWall..180
Figure 123: Class cluster ..181
Figure 124: Class cluster with method cones...182
Figure 125: Class cluster with method spikes..182
Figure 126: NOC 3D TreeMap ..183
Figure 127: Debugs...183

www.manaraa.com

viii

Abstract

Software engineers need to understand the structure of the programs they construct. This

task is made difficult by the intangible nature of software, and its complexity, size and

changeability. Static analysis tools can help by extracting information from source code and

conveying it to software engineers. However, the information provided by typical tools is

limited, and some potentially rich veins of information—particularly metrics and visualisa-

tions—are under-utilised because developers cannot easily acquire or make use of the data.

This thesis documents new tools and techniques for static analysis of software. It addresses

the problem of generating parsers directly from standard grammars, thus avoiding the com-

mon practice of customising grammars to comply with the limitations of a given parsing al-

gorithm, typically LALR(1). This is achieved by a new parser generator that applies a range

of bottom-up parsing algorithms to produce a hybrid parsing automaton. Consequently, we

can generate more powerful deterministic parsers—up to and including LR(k)—without in-

curring the combinatorial explosion that makes canonical LR(k) parsers impractical. The

range of practical parsers is further extended to include GLR, which was originally devel-

oped for natural language parsing but is shown here to also have advantages for static analy-

sis of programming languages. This emphasis on conformance to standard grammars im-

proves the rigour of static analysis tools and allows clearer definition and communication of

derived information, such as metrics.

Beneath the syntactic structure of software (exposed by parsing) lies the deeper semantic

structure of declarations, scopes, classes, methods, inheritance, invocations, and so on. In

this work, we present a new tool that performs semantic analysis on parse trees to produce a

comprehensive semantic model suitable for processing by other static analysis tools.

An XML pipeline approach is used to expose the syntactic and semantic models of the soft-

ware and to derive metrics and visualisations. The approach is demonstrated producing sev-

eral types of metrics and visualisations for real software, and the value of static analysis for

informing software engineering decisions is shown.

www.manaraa.com

ix

Keywords: Static analysis, parsing, parser generators, GLR, Tomita, semantic analysis,
software metrics, software visualisation, XML pipeline, visualisation pipeline.

www.manaraa.com

www.manaraa.com

1

C h a p t e r 1

Introduction

1.1 Overview

This thesis is concerned with tools and techniques for acquiring and delivering information

about the static structure of software, in order to help software engineers understand and im-

prove their products. It introduces a rigorous and comprehensive approach to collecting and

modelling information about software structure, describes a working implementation, and

presents some example applications.

Because software is written in a programming language ‘code’, a necessary task of a static

analysis tool is to decode the source by parsing. The resulting parse trees expose the syntac-

tic structure of the software, making this information available for further analysis. Parsing

of programming languages is a thoroughly researched field of computer science, but the

practical issues of applying parsing theory in software engineering applications have been

less comprehensively addressed. We take steps to remedy this by presenting an improved

parser generation approach that has significant advantages in power and flexibility over con-

ventional parser development practice.

Using the syntactic information from parsing, semantic analysis tools can discover semantic

concepts and relationships in the software, such as classes, methods, inheritance and invoca-

tions. We have developed a semantic modelling tool for Java programs. It provides a more

www.manaraa.com

2

comprehensive and accessible model of software structure than is available from other tools.

For example, the model resolves invocations of overloaded methods, describes the entire

scope structure, and relates semantic features to syntactic ones.

By exposing all the features of a program in a model, the software’s semantic structure is

made available for processing by other static analysis tools, which may manipulate the data

in a variety of ways in order to provide helpful information to software engineers. Such tools

may calculate metrics, produce visualisations, test compliance with design heuristics, or even

form the repository of an Integrated Development Environment (IDE), among other applica-

tions. We present several examples of such tools.

A pipeline architecture provides the means of integrating our static analysis tools. Source

code enters the pipeline, is parsed, semantically analysed, and further processed by metrics,

visualisation or other tools. At each stage, the data is represented in XML, so it may be

viewed, stored, modified, or re-processed. The result is a flexible and transparent mecha-

nism for developing and experimenting with techniques that enhance understanding of soft-

ware.

1.2 Understanding software

Industrial software is commonly extremely large and complex, and subject to continuous

evolution. These factors combine to make software hard to understand, and consequently

hard to develop and maintain. A single program is too complex for a human to comprehend

in its entirety.

Understanding complex software requires more than comprehending the behaviour of lines

of code. It involves the construction of a mental model of the software structure—its com-

ponents and their inter-relationships—and an appreciation of the design forces acting on this

structure. Software designers must weigh multiple competing influences as they seek to op-

timise software attributes, such as simplicity, understandability, efficiency and generality. In

doing so they apply a rich—although perhaps imprecise and conflicting—set of design prin-

ciples, heuristics, strategies, patterns and idioms. Software engineers speak about how a de-

www.manaraa.com

3

sign feels or how code smells [34], reflecting the inexact nature of how they judge a design’s

quality.

The task of understanding software and the task of designing software are linked inextrica-

bly: designers seek to make code understandable, and comprehension enables design. Both

are facets of what is arguably the central theme of software engineering: managing the com-

plexity of software. The fundamental design principles of software engineering—ideas such

as clustering, encapsulation, abstraction and information hiding—address complexity by de-

composing systems into more manageable units. This decomposition relieves the software

engineer of the impossible task of understanding a program in its entirety, by providing lo-

calised neighbourhoods for specific development tasks.

The success of decomposition techniques inevitably depends on the degree of independence

of the resulting pieces. Effective decomposition enables software engineers to understand

and change some region of interest, without unexpectedly disrupting other parts. Despite the

efforts of software engineers, in practice software neighbourhoods often lack clearly defined

boundaries; the possible impact of a code change can be diffuse and difficult to predict.

Neighbourhoods span multiple levels of abstraction; typically, a software engineer must

know the system architecture at a high level of abstraction, a number of source code sections

precisely, and between these extremes related software features at various intermediate levels

of detail, depending on their proximity to the changing code. Determining proximity is itself

not straightforward, as the closeness of software components has many dimensions. For ex-

ample, a statement might be lexically proximate, such as when code resides in the same

scope, it could be in a direct or indirect client relationship through method calls, or it could

have a temporal relationship, such as when a state change influences program behaviour.

Unsurprisingly, principles that encourage decomposition are at the core of software engineer-

ing theory. These include, for example, cohesion and coupling [108], information hiding

[85], and object orientation with its associated body of design principles [93], for example.

These concepts are now so entrenched in software design culture that it might sometimes be

forgotten that they are not ends in themselves. They are valuable because they help software

engineers to manage complexity by decomposition, making a system more understandable

and amenable to change.

www.manaraa.com

4

Our interest in addressing the task of understanding code is to improve the process and tools

by which software engineers acquire the information needed to build relevant, accurate men-

tal models of their programs and use them to inform software design and implementation.

1.3 Static analysis

Software engineers need to understand the structure of software in order to change and ex-

tend it. In current software development practice, this process relies almost entirely on the

expertise of the software engineers, who work directly with the raw material of software—

the source code—and perhaps with supplements such as design documents and UML dia-

grams [33].

Reading of source code is most efficient for tasks that require understanding of a small por-

tion of code at the highest level of detail, such as when editing that code. For larger or more

remote portions of a software neighbourhood a degree of abstraction is warranted and only

certain features of the code will be relevant to a developer’s decision making. UML dia-

grams and other system models can be very valuable for this purpose, but are limited in the

types of information they represent, and like source code, they show only a prescribed view

of the software. Further, source code and diagrams offer no guidance on the application of

sound design principles, other than by enforcing constraints built into the programming lan-

guage or formal notation.

Static analysis tools can help. Static analysis involves examining software artefacts—

usually, but not exclusively, source code—to glean relevant information. For example,

source code checkers such as lint or enhanced compilers (e.g. gcc –wall) provide program-

mers with feedback on programming constructs; for instance by checking for code reachabil-

ity and uninitialised variables. Source code editors typically colour syntax and complete

method invocations as they are typed, and code browsers locate declarations on demand.

Some development environments go further, deriving UML diagrams from code, calculating

metrics and auditing code against constraints. More experimentally, software visualisation

tools seek to present aspects of software structure through visual metaphors.

www.manaraa.com

5

Despite the prevalence of such tools, we suggest that much of the potential of software

analysis to aid software engineers remains unexploited. Software metrics, for instance, are

little used in mainstream software development practice, with some exceptions such as

counting Lines of Code (LOC). It might be argued that software metrics and other static

analysis measures are not more widely used because they have little to contribute to engi-

neers’ decision-making. While this argument reflects current practice, it is not a convincing

limitation. Although most of the decision-making process of a software designer cannot be

automated, static analysis tools can aid the designer by providing relevant information that

would otherwise have to be gleaned manually from the program, or might even have gone

unnoticed. Metrics and visualisations can illuminate software neighbourhoods at appropriate

levels of detail. Design characteristics, such as levels of coupling, can be automatically cal-

culated and violations of design constraints can be detected.

Object-oriented software employs a significantly richer semantic model than procedural

software. Consequently it involves the designer in a broader range of design considerations.

Over time, the object-oriented software development community has produced an assortment

of principles, heuristics and patterns to guide design. Many of these rules are expressed as

maxims in the vocabulary of software engineers, such as the Acyclic Dependencies Principle

[69] [84], the Law of Demeter [65], and Separation of Concerns [26]. Some, such as the

Liskov Substitution Principle [67], have formal definitions, while others, such as Do the Sim-

plest Thing That Could Possibly Work and Model the Real World, defy precise definition and

are necessarily fuzzy and subjective.

In many cases static analysis can support targeted investigations of the software to help soft-

ware engineers make design choices in the presence of competing influences. Objective

rules, such as the Acyclic Dependencies Principle (which warns against cyclic package de-

pendencies) can be checked, with transgressions automatically flagged for the designer’s

consideration. Investigation of subjective rules, such as Separation of Concerns, can be sup-

ported with metrics such as Lack of Cohesion in Methods (LCOM) [9] and by enhancing the

engineer’s view of software structures and neighbourhoods. This highlights features that ex-

ert design forces, violate heuristics or emit code smells.

Information from static analysis tools can be used to augment and complement traditional

perspectives of software. For example, a 3D visualisation might appear alongside a UML

www.manaraa.com

6

diagram, or metrics might be used to decorate conventional source code and diagram views

by colouring tokens.

We suggest that the case for wider use of static analysis information is strong, but that tools

for acquiring high quality data have been lacking. In this work, we have addressed this ob-

stacle by developing new static analysis tools that expose the structure of Java programs by

automatically building a model of their syntactic and semantic structure. The information in

the resulting model is available to software development tools for processing and presenta-

tion. This can then help engineers to better understand the relevant software and improve

their designs.

Improved parser generation is a central theme of this thesis. We have found that the choice

of parsing algorithm has a profound influence on the complexity of the entire source code

analysis—not just syntax analysis but also lexical and semantic analysis—and also influ-

ences the quality of the metrics and visualisations that may be produced from the resulting

model.

Finally, we note that the term static analysis encompasses a great variety of approaches, and

consequently has different connotations across research communities. The IEEE Standard

Glossary of Software Engineering Terminology [47] defines static analysis as “The process

of evaluating a system or component based on its form, structure, content, or documenta-

tion.” Our work falls entirely within this definition, but we do not mean to imply we address

all types of static analysis. On the contrary, our main focus is on tasks at the technical kernel

of conventional static analysis, particularly parsing and semantic analysis of source code.

Semantic analysis is itself an overloaded term; we use it in the conventional sense encoun-

tered in parsing and compiler textbooks1.

1 For example, Aho et al. [1], p.8 say: “The semantic analysis phase checks the source program for semantic errors and gath-

ers type information for the subsequent code-generation phase.”

www.manaraa.com

7

1.4 Outline of thesis

The main contribution of this thesis is an improved approach to the use of static software

analysis for informing software engineering tools and ultimately software engineers’ deci-

sions. This is achieved by new parser generation technology better suited to the require-

ments of static analysis, by building a comprehensive semantic modeller of Java programs

(including resolution of overloaded method calls), and by using an XML pipeline to support

transparent, unconstrained manipulation of the resulting models in order to derive and com-

municate information that is relevant to many software engineering tasks. The rest of this

document is structured as follows.

• Chapter 2 provides additional background on existing static analysis technology and

motivates the improvements made in this work. In particular, it highlights the prob-

lems of conventional parsing, explains the need for semantic models, and discusses

the use of the resulting data to derive metrics, visualisations, and other feedback for

software engineers.

• Chapter 3 addresses parsing in more detail and provides an incremental example of

the LR parser classes. This sets the context for the improvements described in the

following chapter.

• Chapter 4 introduces a more flexible parser generation approach and describes

yakyacc; an implementation of this approach.

• Chapter 5 addresses semantic modelling of Java, as implemented in JST.

• Chapter 6 applies yakyacc and JST to the goal of measuring and visualising Java

programs.

• Chapter 7 draws conclusions and discusses some expectations for future work.

www.manaraa.com

8

C h a p t e r 2

Existing static analysis technology

This chapter describes conventional static analysis, and places it in the context of helping

software engineers to understand software. The usual decomposition of static analysis—into

scanning, parsing and semantic analysis—is described, and the limitations of existing tools

are noted. The goals of this research are defined in the light of these limitations.

2.1 The phases of static analysis

Source code represents software as a linear sequence of sym-

bols. Its syntactic and semantic structure is implicit in this

linear sequence. Static analysis is the process by which we

extract models from source code, make its features explicit,

and then investigate those features. This process is shown in

Figure 1.

By convention, static analysis is decomposed into the simpler

tasks of:

• Scanning (or lexical analysis), which makes lexical structure explicit by breaking

source code into a stream of tokens.

Figure 1: Static analysis phases

www.manaraa.com

9

• Parsing (or syntactic analysis), which makes syntactic structure explicit by

grouping tokens to form parse trees, according to a grammar.

• Semantic analysis, which makes semantic structure explicit by examining parse

trees to discover semantic entities and their relationships.

We describe these three tasks as the phases of static analysis, to indicate their logically se-

quential nature; although, as explained below, they usually run concurrently in conventional

static analysis applications [1]. Examples of the inputs and outputs of phases are presented

in Section 2.1.1.

The archetypal static analysis tool is a compiler front-end, which scans, parses and semanti-

cally analyses a source file before generating intermediate code [1]. With the exception of

code generation, the requirements of a compiler front-end largely coincide with our goal of

extracting structural information. This is unsurprising, as a compiler must acquire compre-

hensive information about software structure in order to derive an executable program from

source code.

The work presented in this thesis follows the conventional decomposition of static analysis

into scanning, parsing and semantic analysis. However, it differs from existing compiler

technology in its intent, with significant consequences for the implementation. Compilers

perform static analysis for the specific purpose of generating executable programs; i.e. the

static analysis model remains internal to the compiler and typically consists of a parse tree

(or an abstract syntax tree that approximates a parse tree) and an associated symbol table

(represented by data structures tailored to the needs of the compiler). There is no require-

ment that the entire model for a program, or even for a source file, be present at any one

time. In contrast, our static analysis tools produce a general-purpose model of the whole

program and expose it for use by software engineering tools.

More specifically, our work differs from conventional compilers’ static analysis in the fol-

lowing ways:

• A particular emphasis is placed on producing a model that is defined in terms of the

standard description of the programming language; i.e. a standard (or otherwise de-

finitive) grammar and its associated semantic description, (The Java Language Speci-

fication [36], for example). This allows the model, or information derived from it, to

www.manaraa.com

10

be interpreted by any software engineer familiar with the language definition. This

contrasts with conventional compiler construction practice, in which parsers are de-

veloped by modifying standard grammars until they conform to the constraints of a

particular parsing algorithm, often LL(k) or LALR(1) [39]. Grammar modification

has the unfortunate side-effect of producing parse trees that describe syntactic struc-

ture in some non-standard way. This difference is explored further in Section 2.2.

• The semantic analyser in a compiler front-end is concerned not only with finding se-

mantic concepts and connections, but also with checking that all semantic rules of the

language are followed. For example, a compiler must check that inheritance relation-

ships are acyclic and that abstract classes are not directly instantiated. Our objective

is to model software already known to be compilable, so some semantic checks are

unnecessary; we can simply assume that such checks have already been made by a

normal compiler. Although this simplifies the semantic analysis task in comparison

to that of a compiler, the difference is less than might be expected since we aim to

expose full structural information to downstream tools. Our semantic model needs to

be sufficiently rich that, in principle, such checks could be performed. We note also

that the task of static analysis itself requires a comprehensive model of the type,

scope and naming system of the relevant language in order to support correct lookup

of names and, in particular, to resolve calls to overloaded methods.

• A conventional compiler processes one com-

pilation unit at a time, and so performs seman-

tic analysis on individual compilation units.

A linker or dynamic loader later makes con-

nections, such as method invocations, be-

tween the separately compiled units. In our

approach we create a single semantic model

that spans an entire program, including all

semantic connections. Figure 2 depicts the

combination of inputs from multiple parse trees, resulting in a single semantic model.

Compilers are not the subject of this research; they are mentioned here to provide a familiar

architectural model for static analysis. We conclude our discussion of compilers by noting

Figure 2: Combined semantic analysis

www.manaraa.com

11

that our improvements to parser generation can be beneficial for compiler construction, in

the same ways they benefit other static analysis tasks; see Chapter 4 for details. Similarly, a

compiler could make use of our semantic model.

Finally, it is worth noting that the separation of source code analysis into the simpler tasks of

scanning, parsing, and semantic analysis is not fundamental; it is a convenience based on the

capabilities of the technologies typically used for these tasks. Scanners perform a relatively

easy job, and typically use a Deterministic Finite Automaton (DFA) derived from a set of

regular expressions. Parsing is more difficult than scanning and usually requires a more

powerful technology, such as a Push-Down Automaton (PDA) derived from a grammar. No

context free parsing technology, however, is sufficiently powerful to recognise all the struc-

tural features found in modern programming languages. For example, no parser (derived

from a context free grammar) can ensure that identifiers are declared before their use, or that

actual parameters match formal parameters. Consequently, these checks are delegated to a

semantic analyser.

2.1.1 An example of static analysis phases

This section gives a very simple example of the inputs and

outputs of the three static analysis phases for the tiny Java

example in Figure 3. As is usual in source code, indenta-

tion informally (and redundantly) displays one aspect of

program structure—syntactic nesting—to a human reader. However, the program could in-

stead easily have been collapsed into a single line.

A scanner breaks source code into a stream of tokens; as shown in Figure 4. Each token

represents a lexical unit found in the input. The token type (in bold in the figure) is a sym-

bolic identifier rather than a string. For most tokens, including keywords and punctuation

symbols, the original

string in the source code

can be inferred from the

token type alone. In this

example the class token

indicates that the string

Figure 3: A simple Java program

Figure 4: Tokens produced by a scanner

www.manaraa.com

12

“class” was found in the input, and that those characters did not form part of a longer token.

In contrast, identifier tokens do not correspond uniquely to source code strings, and there-

fore must carry their original source strings (e.g. “HelloWorld”, “main”) as additional in-

formation, to be used later by the semantic analyser.

For syntactic purposes white space and comments serve only to separate tokens, and are fil-

tered out before parsing. However, these lexical features influence some metrics such as

LOC and comment frequency. As explained in Section 4.3.1.2, in our scanners we can chain

tokens together to form a sequence that includes white space tokens (including newlines) and

comment tokens. In this way the full lexical structure of a source file is preserved in the to-

ken list, even though white space and comment tokens will not participate directly in a parse

tree.

In this research, the lexical analysis approach is conventional; we use widely available tools

such as Flex [79], Java’s regular expression library, or simple hand-coded scanners. We do

not address lexical analysis further, other than to expand on the implications for scanners

caused by our parsing approach. In conventional compiler architecture, lexical analysis in-

cludes the need for the scanner to populate a symbol table, in order to simplify the subse-

quent task of parsing. Ideally, this is done in a way that keeps the scanner independent of the

parser. The parser, on the other hand, is inherently dependent on the scanner. In some cases,

however, information discovered during parsing must be fed back to the scanner in order to

modify the scanner’s behaviour to prevent parsing ambiguities. This creates a cyclic de-

pendency between scanner and parser. For example, this feedback loop is used to avoid am-

biguities in parsing the typedef syntax of C programs, where it is known as the lexer feed-

back hack. Our use of stronger parsing algorithms eliminates the need for such a close cou-

pling between scanner and parser, as will be discussed in Chapter 4.

A parser exposes the syntactic structure of a program by mapping a stream of tokens into a

parse tree. Figure 5 shows a fragment of a parse tree constructed from the tokens of the ex-

ample in Figure 3. A parse tree groups together adjacent words or phrases to form longer

phrases, until a sentence that spans the entire input is found. The legal groupings, and con-

sequently the possible structures of parse trees, are defined by a grammar. See Figure 12 on

page 42 for an example.

www.manaraa.com

13

Parsers can of course be developed manually, but this is a time-consuming process for

grammars with the complexity of typical programming languages. Instead, such parsers are

commonly created by using an automated parser generator (yacc [54], for example). As ex-

plained in Section 2.2, however, current parser generation practice is not without problems,

for which this thesis proposes some solutions.

Semantic analysis identifies the semantic entities in parse trees and determines the relation-

ships between them. These semantic entities are instances of concepts defined by the pro-

gramming language, such as classes, methods and variables. Relationships between them

include, for example, inheritance, invocation and containment. In Figure 6 a simplified se-

mantic model produced by a semantic analysis of the example parse tree is shown. The main

structural elements of the program are represented as objects in the semantic model. In this

case, the model shows a class called HelloWorld, that contains a main method that accepts

a parameter called args. The type of this parameter is represented by an object (not shown

in the diagram) that describes an array of Strings, which in turn references an object that

describes a String.

Figure 5: Parse tree fragment produced by a parser

www.manaraa.com

14

Unlike a parse tree, which represents the syntactic structure of a single source code transla-

tion unit (file) in a strictly hierarchical fashion, the semantic model represents an entire pro-

gram as a directed graph of connections between semantic entities. If our example program

were more elaborate, the model would show additional semantic connections that are not

evident in the parse tree. For example, if the main method invoked another method, perhaps

in another source file, the invocation relationship would be explicit in the model, whereas it

is not explicit in the parse tree. In a similar way the usages of variables are connected to

their declarations and the declarations are connected to their types. Semantic analysis of

Java is addressed in Chapter 5.

Once lexical, syntactic and semantic analysis have all been performed, the complete static

structure of software has been exposed in a model and is available to software engineering

tools, including those that calculate metrics or construct visualisations.

Figure 6: Semantic model fragment produced by a semantic analyser

www.manaraa.com

15

This separation of static analysis into three phases is a powerful convention for controlling

the complexity of the task. Each exposes more information by emitting a more elaborate

data structure: scanning produces a linear data structure, parsing produces a tree, and seman-

tic analysis produces a graph. In conventional approaches this clean separation of concerns

is often compromised to some degree by the need for all static analysis phases to access a

symbol table. It breaks down when a language is too complex for the parsing technology

employed. More powerful parsers avoid this coupling. This will be discussed in Chapter 4.

2.2 Conventional parser development

Parsing is a thoroughly investigated area of computer science, and parser development is a

commonplace software engineering activity. Consequently it might be assumed that little

room for improvement to established parser development practice remains. We suggest,

however, that despite its firm academic foundations, the practical issues of parser develop-

ment for software engineering purposes have been less well addressed. This section gives a

simplified introduction to common parser development practices and the parsing problems

addressed in our research. A more thorough discussion of parsing technology is presented in

Chapter 3. In this section we refer to several parser classes—LL(k), LALR(1), LR—with

minimal explanation; the reader requiring more parsing background is referred to the next

chapter.

A language is defined by a grammar. The grammar also implies the structure of parse trees

for sentences in that language. A grammar therefore contains all information needed to de-

velop a parser for that language.

www.manaraa.com

16

A parser may be developed manually, by writing a

program that builds parse trees in a fashion consis-

tent with the grammar. For example, a parser hand-

coded in C appears in Figure 7 (top). Hand-coded

parsers often use a recursive descent parsing algo-

rithm (see Chapter 3), because the resulting code di-

rectly reflects the grammar and is simple enough to

be understood by humans, even for complex lan-

guages. Unfortunately, the inherent weakness of this

parsing algorithm means that relatively few gram-

mars can be mechanically implemented as a recur-

sive descent parser. For more complex grammars—including those of many actual pro-

gramming languages—a substantial amount of inventiveness is required on the part of the

parser’s authors in order to convert the given grammar into recursive descent function calls.

As a result the parser may bear little resemblance to the original grammar.

The alternative to manual parser development is to use a parser generator, such as yacc

(Figure 7, bottom) [54], bison [27], or ANTLR [87]. Yacc, as is typical of parser generators,

requires an input file (grammar.y in the figure) that:

• Specifies the grammar in its own dialect of Backus Naur Form (BNF; see Chapter

3).

• Contains C action code (embedded in the grammar) that will be executed when the

generated parser runs and recognises grammar productions. This user-supplied code

typically builds a parse tree.

The output of yacc is a C source file (y.tab.c) that implements the parser, including the

supplied C action code.

Automatic parser generation enables the use of more elaborate parsing algorithms, uncon-

strained by human cognitive capabilities. Even so, the set of grammars that can be accepted

by conventional parser generators such as yacc is limited, and unmodified standard gram-

Figure 7: Manual and automatic
parser development

www.manaraa.com

17

mars are likely to fall outside it. The size of the set of grammars accepted is a function of the

power of the parsing algorithm (LALR(1), in the case of yacc) used by the parser generator.

A great variety of parsing algorithms of varying powers have been developed (Chapter 3

gives an overview), but only a few of these are routinely applied to the task of parsing pro-

gramming languages. Unsurprisingly there is a trade-off between speed and generality. The

measure of speed for a parser is its asymptotic performance against the number of tokens in

the input. To be practical programming language parsers must exhibit linear performance,

because of the very large numbers of tokens in source files. Consequently mainstream pars-

ing practice has largely avoided slow (polynomial or exponential time) general parsing algo-

rithms in favour of fast (linear time) but more restrictive algorithms. These linear-time pars-

ers have the common characteristic of operating deterministically; i.e. they are both fast and

restricted because they can pursue only one line of investigation. Grammars that allow am-

biguous phrases are intractable to deterministic parsers. This remains true even if ambiguity

is merely an artefact of the limited context used by the parsing algorithm, rather than a fun-

damental characteristic of the grammar.

A parser that reads tokens in sequence (“left to right”) and constructs a parse tree starting at

the root and working toward the leaves (“top down”) is known as LL (see Chapter 3). Re-

cursive descent parsers are a common implementation. LL parsers are widely used because

their simplicity makes them comprehensible to human parser developers. However, this

simplicity also severely restricts the set of grammars they can handle deterministically. In

other words, the likelihood of an LL parser generator failing to generate a parser for a par-

ticular grammar is relatively high.

The most powerful linear parsing algorithms belong to the LR class (see Chapter 3). LR

parsers differ from LL parsers in that they build parse trees from the leaves toward the root

(“bottom up”). This makes LR parsers fundamentally more powerful than LL, because they

have more information available when recognising productions. The child nodes of a parse

tree branch are known before the branch itself. Put another way, the parser does not attempt

to recognise a production until it has seen all the RHS symbols of that production. This addi-

tional power comes at the cost of increased complexity, making the use of a parser generator

mandatory. As Grune and Jacobs [39] put it: “the control mechanism of such a parser is so

complicated that it is not humanly possible to generate it by hand” (p. 78).

www.manaraa.com

18

The most powerful deterministic variant of LR parsers is known as LR(k), where k defines

the depth of lookahead used to decide between alternative parser actions [61]. Unfortunately

LR(k) parsers are widely thought to be impractical, because conventional implementations of

these algorithms produce a combinatorial explosion in the number of states of the parsing

automaton. The term canonical LR(k) is used to denote this explosive approach to building

LR parsers. In Chapter 4, we show how combinatorial explosion can be avoided and sub-

stantiate our claim that LR(k) parsers can be made practical. (Other authors have reached the

same conclusion by different paths, as we explain in Section 4.4.)

When k is reduced to zero, the combinatorial explosion does not occur and the resulting

LR(0) parsers are easily constructed, having the same order of complexity as the grammar

itself, because the number of states is directly related to the combined size of all RHSes in

the grammar. Unfortunately the ability of such parsers to choose between possible parser

actions is so much diminished that LR(0) parsers are very weak.

In order to avoid the problems of canonical LR(k), simpler and weaker LR variants were de-

vised that nevertheless still surpass the power of LL approaches. Foremost among these are

SLR(k) [23] and LALR(k) [22], which avoid state explosions while still offering a substantial

portion of the power of canonical LR. LALR is the more powerful of the two. Even so, val-

ues of k higher than one are still commonly considered problematic in practice; again be-

cause of combinatorial explosions. Each increment in k adds a dimension to a table-driven

parser. Once again we find that this problem can be avoided, and that SLR(k), LALR(k) and

LR(k) parsers for higher values of k can be made practical. Chapter 4 will provide details.

With canonical LR and lookaheads deeper than one ruled out of consideration by program-

ming language parser developers, LALR(1) has long been viewed as the best practical ap-

proach. This view is articulated by Aho et al. in their influential textbook [1], p.236: “This

method is often used in practice because the tables obtained by it are considerably smaller

than the canonical LR tables, yet most common syntactic constructs of programming lan-

guages can be expressed conveniently by an LALR grammar.” As Gough [37], p.255 puts it,

“The LALR parsers are the most widely used bottom-up parsers at the present time. They

appear to strike an ideal balance between the power of the underlying method, and the com-

plexity of its implementation.”

www.manaraa.com

19

The dominance of LALR(1) was cemented not just by the prohibitive increase in complexity

needed to attain the more powerful canonical LR, but also by the view that the resulting

gains in power would be of relatively little practical value anyway. This attitude is evident in

the quote above: “most common syntactic constructs of programming languages can be ex-

pressed conveniently by an LALR grammar” [1]. Gough [37] (p. 262) more directly states:

It appears that in practice the number of grammar constructs which lead to

LR(1) but not LALR properties is very small. The LALR method is thus

likely to remain fashionable […].

Elsewhere, Aho et al. [1] state that “LR parsers can be constructed to recognize virtually all

programming language constructs for which context free grammars can be written” (p. 215).

Such sweeping claims for LALR and LR might create false expectations that grammars for

real programming languages can readily be expressed within the limits of these parsing

classes, and that there is consequently little need for more powerful parsers. This belief,

however, does not match our experience in developing parsers for modern programming lan-

guages, which may be syntactically ambiguous (and hence intractable to all deterministic

approaches) or just very difficult to parse. We suggest that claims for the sufficiency of lim-

ited parser classes underestimate the problems of adapting grammars to fit these limits. Per-

haps the claimants also underestimate the complexity of programming languages for which

parsers would be required; C++ is a telling example. See [48] for an exploration of this

topic.

In practice programming language grammars commonly defeat even the most powerful of

the linear time parser classes, unless they are specifically designed to comply with the algo-

rithm. Consequently a grammar designed primarily to describe a programming language to

human readers is likely to be unsuitable for parsing by the dominant parser generators; LL(k)

and LALR(1). As noted by Grune and Jacobs [39], “a grammar that is designed without re-

gard for a parsing method and just describes the intended language in the most natural way

has a small chance of allowing linear parsing automatically”.

Standard grammars are no exception, as their main purpose is to define and communicate the

syntax of a programming language to human readers. The alternative approach of crafting a

standard grammar to accommodate a particular parsing algorithm sacrifices simplicity and

www.manaraa.com

20

comprehensibility for human readers. The solution sometimes adopted (in the Java Lan-

guage Specification [36], for example) is to provide two grammars, one for human compre-

hension and another for parsing. This approach, however, does not address the problem that

parsing will then not conform to the grammar as understood by humans.

When a given grammar falls outside the capabilities of conventional parser generators, the

usual parser development practice is to manually adapt the grammar until it meets the con-

straints of the chosen parser class, while still continuing to describe the same language as the

original grammar (or so it is hoped). This practice of grammar modification has several dis-

advantages:

• Grammar design is a labour intensive task requiring specialist skills and good under-

standing of the chosen parsing technology.

• It is difficult or, for some languages, impossible to modify a grammar to meet the

limitations of a parsing algorithm without changing the underlying language.

• Parse trees conform to the modified grammar, rather than the original. In other

words, the syntax of a sentence is represented in some non-standard way. This com-

plicates the task of any downstream program that relies on the language standard.

Semantic analysis in particular is made more difficult, because the semantic rules of

the language are normally defined in terms of the standard grammar.

• Manual adaptation of grammars leads to a loss of rigour. Apart from the obvious po-

tential for human error in modifying the grammar, the use of a custom grammar in-

troduces a confounding translation step when describing syntactic features. This is of

particular concern in static analysis applications, in which we seek to rigorously cal-

culate and describe metrics, visualisations and other representations of program fea-

tures. The natural way to communicate syntactic features is in terms of the standard

grammar. So, for example, we might describe a metric as the average number of ex-

pressions per statement, where expression and statement are defined by the standard

grammar.

www.manaraa.com

21

• Reference grammars change as languages evolve and grow. Even small changes can

require a disproportionate amount of reworking of a custom grammar derived from

previous versions of the original grammar.

For some languages no amount of modification will make a grammar acceptable to a deter-

ministic parser generator. This is always true when the language is inherently ambiguous.

In C++, for example, a single sequence of tokens such as

S(*b)[5];

has three syntactically valid meanings: (1) a declaration of b as a pointer to an array of five

S’s, or (2) a dereference of b, cast to S and indexed to its fifth element, or (3) an invocation

of function S with parameter *b and the returned value indexed to its fifth element. The am-

biguity must be resolved semantically.

More subtly, the language may be unambiguous, yet still fall outside the discriminatory

power of a deterministic parsing algorithm. This occurs, for instance, when an arbitrary

amount of lookahead is needed to resolve an ambiguity. For example, in a language that al-

lows any depth of nested parentheses, a fixed amount of lookahead is not adequate to differ-

entiate all possible inputs.

For such languages it becomes necessary to work around the weakness of a deterministic

parser in more intrusive ways:

• One strategy is to construct a parser from a grammar that approximates the language

with some superset of the legal syntax, and requires the semantic analyser to trans-

form the parse tree to the expected form (while catching any invalid syntax), or in

some other way to accommodate the modified language. The gcc compiler [98], for

example, uses this strategy.

• Another approach is to protect the parser from ambiguity by feeding syntax informa-

tion from the parser back to the scanner, so that the scanner may change the types of

tokens it produces and thus avoid ambiguity. We earlier noted an example of this

approach known as the lexer feedback hack. This workaround is viable only when

the disambiguating information is available in the parser.

www.manaraa.com

22

• In cases where semantic disambiguation is necessary, feedback is required from the

semantic analyser to the parser. For example, a Java parser (from a grammar such as

the exposition grammar of [36]) cannot tell from syntactic information alone whether

an identifier should be reduced as a className or an interfaceName. This informa-

tion requires a semantic analyser that can model and interpret the scope structure, in-

heritance hierarchy and lookup rules of the language.

In the case of a complex language such as C++, it may be necessary to combine all these

strategies together. The result is a severe breakdown of the decomposition of static analysis:

scanning, parsing and semantic analysis become heavily coupled and very complex. We

have found that these difficulties can be entirely avoided by the use of more powerful pars-

ing techniques, including GLR—a nondeterministic version of LR—which was originally

developed for parsing natural languages. We explore the application of GLR to the problem

of parsing C++ in [48].

This thesis presents a solution to these parsing problems, in the form of a more adaptable

parser generator. Rather than adapting a grammar to a chosen parsing algorithm, our parser

generator adapts the parsing algorithm to the given grammar, generating a parser that exhib-

its linear or near-linear performance on actual source code. As a consequence we can parse

source code according to its definitive grammar, so that the resulting parse trees support fur-

ther static analysis—including semantic analysis, metrics calculation, and visualisation—in

terms that conform to the language standard. Chapter 4 explains how this is achieved.

2.3 Semantic modelling of software

A programming language definition ascribes semantics to the syntactic constructs of a pro-

gramming language. Classes, inheritance, methods, method invocations, types, scopes and

access protection are examples of the semantic concepts of OO programming languages.

These concepts are, in effect, the material with which software designers work.

Parsing is concerned only with the way in which tokens are grouped together, and not with

the meaning of those tokens. A parse tree therefore does not explicitly show the semantic

structure of a program, although semantic features will be evident to some degree in the lan-

www.manaraa.com

23

guage syntax. A parse tree, however, cannot show the network of connections between se-

mantically related parts of a program, such as the relationship between a variable declaration

and its type, defined elsewhere in the program.

A semantic analyser examines parse trees in order to identify the semantic entities in the

software and to find the relationships between them. A representation of this structure is a

semantic model of the program. Such a model captures the program’s underlying structure,

as opposed to the superficial structure of syntax. This gives a far richer source of informa-

tion than is available from parse trees, and this information also corresponds closely to the

structural concepts manipulated by software designers.

In order to build a complete semantic model, a semantic analyser must be able to represent

the full type system of the language. It must record all declarations, and use scope rules to

resolve names. For example, in order to resolve a method invocation in a Java program, the

semantic analyser must first determine the scope in which the invocation is made, and then

find all visible methods of the given name, correctly traversing the inheritance hierarchy, im-

ported packages, etc. The types of the actual parameters must be determined, a process that

may involve analysing arbitrary expression syntax, and these types must be matched against

the types of the candidate methods’ parameters. Type promotions must be applied, with

closer matches favoured over more distant ones. Access rules must be checked to eliminate

inaccessible methods. At the end of this process a relationship is added to the semantic

model, connecting the invocation expression with the declaration of the method to be in-

voked, according to the static type structure of the program.

The essential data structure of a semantic analyser is a symbol table. The term symbol table

evokes the need to look up named symbols (such as types and variables) whenever their

names are used in the source code. In modern programming languages, and OO languages in

particular, the scope structure and name resolution rules are sufficiently complex that the

term table is misleading; in fact, name look-up requires a complex graph of data structures

that reflect the scope rules of the language. Scopes must correctly reflect inheritance, nested

classes, namespaces, access control, overloading, etc. The requirements of such a data struc-

ture coincide with those of a comprehensive semantic model; it must fully capture the decla-

rations and scopes of the program. Rather than viewing a symbol table as a useful data struc-

www.manaraa.com

24

ture for constructing a semantic model, our approach is to recognise them as the same con-

cept. The symbol table is the semantic model (and vice versa).

Unlike syntax, programming language semantics are usually described in natural language,

and semantic analysers are typically developed manually rather than generated automati-

cally. For this research we manually developed a semantic analyser for Java, following the

language specification. As already noted, this process was greatly aided by the use of a

parser consistent with the standard grammar. The semantic analysis program works from the

same constructs that are used in the language specification.

 In Chapter 5, we present the design of a semantic model for Java. In essence, this is primar-

ily a data modelling exercise; we produced an OO model of the concepts represented by the

Java type system. Objects in this model describe the packages, classes, fields, methods,

blocks and other entities from which the program is made. Relationships between these ob-

jects represent inheritance, containment, accesses and invocation, among others. The result-

ing model provides a richer and more complete representation of the static structure of Java

programs than is available elsewhere.

2.3.1 Reflection

Alternatives to our semantic modelling approach include Java’s reflection facility. Java’s

reflection classes, in fact, comprise a semantic model, with the added feature of integrating

with the running process. This allows, for example, access to runtime values of fields and

execution of methods. Figure 8 shows the main features of the reflection API, omitting run-

time-specific aspects. The relationships depicted are logical rather than an exact model of

the implementation. Clearly, the major semantic structures of Java programs are represented

in this model, and the reflection API therefore goes some way toward achieving the goals of

this project.

www.manaraa.com

25

Reflection, however, was not designed as a comprehensive, general-purpose semantic model

for Java. Most notably, the reflection model describes method interfaces but does not repre-

sent the contents of methods. The concepts of block scopes, local variables and method in-

vocations, for example, are not modelled at all. These internal structures are very important

for our purposes, including determining software neighbourhoods, measuring reuse, detect-

ing dependencies, etc. A further limitation of reflection in our context is the degree of model

abstraction. Reflection maps the actual semantic elements of a Java program into a simpli-

fied, generalised form. For example, ordinary classes, inner classes, interfaces, primitive

types and arrays are all described by instances of Class, despite the significant variations in

Figure 8: Java reflection semantic model classes

www.manaraa.com

26

their semantics. This degree of approximation is unhelpful for calculating precise metrics

and deriving other information, because a portion of the semantics is suppressed by the

model and must be deduced (if possible) by whatever tool needs to use it.

Despite its limitations, reflection provides a valuable supplement to our source code based

approach. We use reflection when source code is unavailable. This is often the case for li-

brary utilities in typical projects. The semantic analyser builds a full model of classes for

which parse trees are available and reflects on .class files to build a skeleton model of li-

brary software. This is sufficient to show how the software under development relates to ex-

isting libraries.

 Other tools that expose the contents of Java .class files include decompilers and interfaces

to support debuggers. Such tools offer more detail than reflection; e.g. by showing the con-

tents of methods. Nevertheless, they are not ideally suited to general semantic modelling and

inevitably provide a less faithful portrayal of the source code than a parse tree. More funda-

mentally, any approach that relies on an intermediate representation of a program (such as

.class files) will be restricted to languages that use that intermediate format, and to pro-

grams that compile without errors. Source code analysis does not share these limitations. In

this work, we have restricted semantic analysis to Java, but the approach will also work for

other languages. Likewise, this thesis addresses only buildable programs, but a related pro-

ject extends the approach to work with code that contains errors [51].

2.3.2 Alternative models

We have already noted the parallels between our approach and that of compilers. An even

stronger parallel exists with the models employed by some Integrated Development envi-

ronments (IDEs) to represent the structure of software under development. Eclipse [29] [3]

is a well-known example. In fact, our goal of exposing software structure to software engi-

neering tools matches exactly the needs of an IDE, which provides a collection of such tools.

An example of our approach being used for this purpose is described in [21].

The open source Eclipse IDE offers a useful basis for comparison with our syntactic and se-

mantic modelling approach. Much of the Eclipse functionality described here was developed

www.manaraa.com

27

in parallel with this research. Today Eclipse remains under very active development, with a

large community of users.

Eclipse provides a framework into which development tools can be plugged. One such plug-

in is the Java Development Tool API (JDT), which models Java programs in order to support

arbitrary Java development plug-ins, including editors, UML diagram tools, refactoring

tools, and others. JDT essentially occupies the same niche as our static analysis model, but

also offers additional features to support IDE tasks.

JDT is too complex to describe fully here, but we can outline some relevant features. Figure

9 shows a simplified version of several interfaces in org.eclipse.jdt.core, the core Java

modelling package. It is difficult to characterise this model as either syntactic or semantic; it

shows the main declared features of a program in a semantic style, but only relates them syn-

tactically. By exposing classes (as types), fields, methods and so on, it resembles the model

presented by the reflection API (Figure 8), although the model is derived from source code

rather than class files. Also, as with reflection, the internal structures of methods such as

statements and method invocations are not modelled by jdt.core, with the exception of lo-

cal variables.

Unlike reflection, jdt.core does not model semantic relationships between model entities.

So, for example, an IType object representing a class does not know the IType of its super-

class, it knows only the superclass name (a String). Similarly an IField object can pro-

vide the name of its declared type, but not the model object. However, some syntactic nest-

ing is modelled, e.g. a class can return all of its IField objects. An exception to the rule of

modelling only syntactic relationships is made for inheritance. The ITypeHierarchy inter-

face indirectly exposes the inheritance relationships between IType objects via methods such

as getAllsubTypes(IType).

www.manaraa.com

28

Another package of JDT, org.eclipse.jdt.core.dom, defines classes for more exten-

sively modelling the syntactic structure of Java programs. Figure 10 is a much-simplified

class diagram that illustrates the main features of the syntactic model (many classes are omit-

ted for clarity). The model is an Abstract Syntax Tree (AST), a data structure that approxi-

mates a parse tree without corresponding exactly to any grammar; although it is influenced

by the LALR(1) grammar of the underlying parser. Every node in the tree is an instance of

Figure 9: JDT core model interfaces (simplified)

www.manaraa.com

29

the abstract ASTNode class. Concrete subclasses describe specific syntax, such as a Field-

Declaration, a WhileStatement or a MethodInvocation. Each object in the tree contains

subtree nodes of the specific types required. For instance, a whileStatement contains an

Expression representing the test expression and a Statement representing the body of the

loop. As can be seen from the diagram, Expression and Statement are heavily used as ab-

stract nodes, making up the bulk of the tree. The proliferation of subclasses reflects the vari-

ety of statements and expressions in Java.

Figure 10: JDT AST classes (simplified)

www.manaraa.com

30

Another heavily used class is Type, which records the use of a type, as opposed to modelling

the type itself. For example, a SimpleType contains (indirectly) a String that names a class

or interface. The type itself is described by a TypeDeclaration.

Semantic connections, such as between a Type and the TypeDeclaration it implicitly refer-

ences, are not represented in AST nodes. However, the same package (jdt.core.dom) also

provides a number of classes and interfaces that model bindings, i.e. objects that are de-

scribed in JDT documentation as containing “resolved information”. These appear in Figure

11. Binding objects are, in effect, a semantic model that describes packages, variables,

methods and types, and the relationships between them. For example, an instance of Vari-

ableBinding models a declared variable, including a relationship to a TypeBinding object

that models the variable’s type. In turn, a TypeBinding that models a class provides access

to the TypeBinding of its superclass, the MethodBindings of its methods, and so on. In this

way binding objects form a self-contained network of semantic entities.

The binding model in Figure 11 is similar to the JDT core model in Figure 9, and (in the lat-

est version of JDT) is in fact connected to it. A binding object can provide the related

IJavaElement via the getJavaElement() method. This allows a translation from the more

richly connected semantic model of bindings to the sparser model of software features pro-

vided by jdt.core.

The binding classes are even more similar to the model provided by Java reflection (Figure

8). Like reflection, JDT’s binding model approximates the semantics of Java by abstracting

and generalising concepts. JDT’s TypeBinding corresponds to reflection’s Class, Pack-

ageBinding corresponds to Package, and VariableBinding corresponds loosely to Field.

MethodBinding serves as both Constructor and Method.

As noted earlier, reflection does not expose internal or syntactic features of semantic objects.

JDT improves on reflection by modelling connections between binding objects and the AST

nodes that declared them. Any (syntactic) AST node that represents a declaration can pro-

vide a (semantic) binding object for that declaration. For example, a MethodDeclaration

node in the syntax tree has a resolveBinding() method that returns an IMethodBinding.

Similarly, any AST node that references a declared feature can provide a binding object for

the referenced entity. MethodInvocation, for example, has a resolveMethodBinding()

www.manaraa.com

31

method that returns a MethodDeclaration. Unlike many static analysis tools, overloaded

method calls are fully resolved.

Figure 11: JDT binding classes (simplified)

www.manaraa.com

32

Relationships in the reverse direction (from the binding to the syntax tree node) are also

available, although less directly. Given a binding object, the AST node containing the decla-

ration can be located by the findDeclaringNode() method of a CompilationUnit. Com-

pilationUnit is the root node of a syntax tree. Of course, only the tree containing that dec-

laration can find it, which means that a caller must first know in which tree to look.

This last point illustrates a significant difference in the semantic modelling approaches of

JDT and this research. We build a monolithic semantic model that spans an entire program.

Objects in this model are identity objects, so that one semantic concept is represented by one

object. In JDT a semantic model is provided as a supplement to a syntax tree. Different

trees create different binding objects. In other words, if two syntax trees reference the same

semantic entity, different binding objects will be provided for that entity by each tree. The

equals() method of these objects can be used to determine if they model the same thing.

For example, if two classes in separate source files each extend the same superclass, different

(but equal) ITypeBinding objects will be provided for the superclass by each AST.

We conclude this description of JDT by noting that, although it shares with this research the

goal of presenting a static model of Java software, it differs in significant ways in its empha-

sis and implementation. Generally speaking, JDT is more complex and less focussed on the

task of rigorously modelling software structure. Specific differences are listed below.

• JDT is inherently part of an IDE framework, and must participate in an interactive

environment of diverse (unknown) tools working concurrently on a changing code

base. This constrains the design and use of the model in some ways, for instance by

discouraging the construction of a monolithic model for an entire program, in order

to keep resource usage in check. It also requires JDT to provide features that are

outside the scope of our work, such as the ability to modify syntax trees and to re-

spond to changes made by other tools. In contrast, our model is a stand-alone snap-

shot of a program, focussed solely on representing the program structure.

• JDT seeks to approximate the syntactic and semantic structure of programs by ab-

stracting and generalising concepts. For example, classes, interfaces, primitive

www.manaraa.com

33

types, arrays and other types are all represented as instances of the same class. Our

approach is to maximise fidelity to the language standard, so that semantic and syn-

tactic structures closely correspond to concepts in the language definition. This is

made possible for syntactic modelling by the use of more powerful parsing that uses

the standard grammar. In turn, faithful syntax representation enables a semantic

model tied closely to the language definition; with one concrete class per concept.

• Clients of the JDT model are tools specifically written to use the JDT API. This API

prescribes not only the information available, but the ways in which the model may

be manipulated. Our model is exported as an XML file that may be read and proc-

essed independently of our modelling tools.

• The JDT model is (somewhat redundantly) decomposed into three facets: the core

model, ASTs and bindings. The overall design of the model is syntax-centric; the

semantic structure exposed by bindings is supplementary to ASTs. The boundary

between syntactic and semantic concerns is blurred, effectively resulting in a hybrid

syntactic-semantic model. Our approach has a more precise architecture of two lev-

els: syntax (modelled by parse trees) and semantics (modelled by a semantic model),

with a definite separation of concerns. By keeping the levels separate but related,

each can be designed to more precisely represent the structure it models. The se-

mantic model is the primary structure, from which parse trees may be accessed. Our

semantic model is also more elaborate and comprehensive than that of bindings, so

that it is possible to discern more of a program’s structure without referring back to

its parse trees. For example, our semantic model directly represents all the scopes

defined in a program and shows what declarations they contain.

2.4 Informing software engineers

The focus of this research is on the construction of comprehensive syntactic and semantic

models of programs, as described in earlier sections. These models are not an end in them-

selves. Our primary motivation is the desire to better inform software engineers about soft-

ware structure, helping them to recognise software characteristics, detect and evaluate design

forces, and discern software neighbourhoods. In order to perform this role, the software

www.manaraa.com

34

models must be amenable to further processing, so that other software tools may filter and

transform the data to provide specific information pertinent to software engineer’s decision-

making processes.

In this work we applied our software model to the task of informing software engineers by

using model data to derive metrics, visualisations, and other feedback for developers. Our

goal in addressing metrics and visualisations is not to propose specific new metrics or visual

metaphors (although we do make use of some). Instead, we provide a basis for defining arbi-

trary software structure metrics and visualisations. We show how to do so in a way that re-

duces the difficulty of the task and improves the rigour and transparency of the results. The

approach is robust and suitable for application to industrial-scale software development.

2.4.1 Software measurement

Engineering disciplines require, by definition, the use of quantifiable approaches. Software

engineering theoreticians have defined many metrics, yet quantifiable approaches still play a

relatively minor role in mainstream software development practice. Some simple measures

are customary for software development—development time and costs, bug counts, for in-

stance—but characteristics of the software products themselves are less commonly quanti-

fied. A notable exception is the Lines of Code (LOC) metric. It is arguably the only soft-

ware metric to be used pervasively, despite its serious flaws as a useful yardstick for devel-

opment effort, software size or complexity.

Many attempts at defining software metrics with stronger theoretical underpinnings have

been made. Halstead’s software science [40] and McCabe’s cyclomatic complexity and es-

sential complexity [70] are well-known early examples. However, the validity of these theo-

ries and the metrics themselves have been repeatedly questioned. The concepts of cohesion

and coupling [108], dating from around the same time, have been received more favourably

and have profoundly influenced the field of software design; yet no standard cohesion and

coupling metrics have emerged. A great many other product metrics—Purao and Vaishnavi

[90] identified over 350—have been proposed, without making the transition into orthodox

practice.

www.manaraa.com

35

One reason for this is the evolution of software technology, and particularly the advent of

object-oriented software, which has outmoded some metrics and made applications of under-

lying theories more troublesome. The most widely-known OO metrics were proposed by

Chidamber and Kemerer [9], but these have been criticised by Churcher and Shepperd [16]

and others. As Fenton & Pfleeger note, “there is as yet no widespread agreement on what

should be measured in object-oriented systems and which metrics are appropriate” [31],

p.319.

Despite this unsatisfactory state, the potential benefits of metrics are undiminished, and we

argue that there are in fact many valuable metrics that can be of immediate use to OO soft-

ware engineers. However, we do not attempt to identify the ideal suite of OO metrics in this

work. Instead, we make progress towards better metrics, in part by addressing a problem

described by Fenton and Pfleeger [31] in the following words:

When measuring, there is always a danger that we focus too much on the

formal, mathematical system, and not enough on the empirical one. We rush

to create mappings and then manipulate numbers, without giving careful

thought to the relationships among entities and their attributes in the real

world.

The entities, attributes and relationships of interest for software structure metrics are exactly

those of our static analysis model. We suggest that the under-emphasis of such models in

software metrics research is not due to neglect, but largely to the difficulty of building the

models properly. In a research setting, some metrics tools make use of heuristic techniques,

such as fuzzy parsing, to extract approximate data from for deriving metrics. For example,

statements might be counted by scanning for semicolons, or classes might be found by isolat-

ing class declaration syntax without parsing surrounding code. We suggest that a lack of

rigour in calculating metrics is generally unhelpful, and that such tools are error prone and of

limited use in industrial software settings. Measurement of software reuse, for example, is

sure to require detection of method calls. To be accurate this requires resolution of over-

loaded methods, which in turn requires full understanding of the scope and type system of

the language. Such involved and comprehensive information is beyond the reach of heuristic

tools. In contrast, our approach provides a full and accurate model of the software structure,

www.manaraa.com

36

described in terms native to the language. This provides a more robust base for deriving

metrics.

It might be suggested that the use of metrics is premature in the absence of any cogent theory

of software. As Kyburg [63] puts it “If you have no viable theory into which X enters, you

have very little motivation to generate a measure of X”. Some metrics researchers have at-

tempted to address this by developing models that map measurable characteristics of soft-

ware to higher-level concepts of software quality, [71] for example. Our data is a suitable

resource for these approaches, but the value of such metrics is likely to remain questionable

because of the subjective, multi-dimensional nature of quality. We argue, however, that suf-

ficient theory is already established in the field of OO design to make metrics valuable. Ob-

ject-orientation itself provides a model of how to structure software, backed by a rich collec-

tion of design principles and heuristics. Many of the software characteristics with which

these principles and heuristics are concerned are measurable.

In many cases even simple measurements of software characteristics are of relevance to a

software designer. For example, consider a programmer editing a method bar() of some

class Foo. Our model could directly supply the programmer (perhaps via some sort of

dashboard metaphor) with information such as:

• Foo is 3 levels deep in the inheritance hierarchy (Depth In Tree).

• Foo has 6 immediate subclasses (Number Of Children)

• Foo has 8 subclasses total.

• Variables of type Foo are declared in 0 other classes.

• Variables of some ancestor type of Foo are declared in 2 other classes.

• bar() overrides a method, which in turn implements an interface method.

• bar() is overridden in 1 subclass.

• bar() is called by 12 other methods, 10 of them in other classes.

These simple measures serve to characterise the software feature under investigation, helping

the engineer form an impression of the importance of the method, how heavily connected it

is and in what ways, how much of the software neighbourhood must be understood, and how

widespread the impact of changes is likely to be.

www.manaraa.com

37

Many design principles and heuristics suggest more targeted metrics. Minimising coupling,

for example, can be encouraged by measuring the number of methods called by bar(), while

the related Law of Demeter [65] (which mandates a single level of dereferencing only) can

be backed by counts of violations, or measuring the number of levels of dereferencing. The

more fundamental idea of information hiding [85] can be supported by counting the number

of variables and methods in scope. Many other heuristics, such as those of Arthur Riel [93]

can be quantified. Some, such as minimise the number of messages in the protocol of a class

are straightforward, while others such as keep related data and behaviour in one place re-

quire elaboration; Chidamber and Kemerer’s Lack of COhesion in Methods (LCOM) being

one possibility [9].

The opportunity for developing more sophisticated metrics is also improved by our model.

For example, we have defined ClassRank, PackageRank and MethodRank as a suite of met-

rics for ranking software entities based on their semantic connections, in much the same way

as the Google search engine calculates pagerank of web pages from hyperlinks [77]. These

metrics provide a measure of the relative structural importance of software entities in a pro-

gram, and indicate the topology of software reuse. Without the semantic relationships cap-

tured by our model, in this case method invocations and variable accesses, these metrics

could not be calculated.

As noted earlier, another research project [21] uses our static analysis model as the core of a

repository for a collaborative IDE. One of the tasks of the central server is to automatically

detect software neighbourhoods of individual developers and to infer the proximity of other

developers. In this setting metrics that describe a software neighbourhood, perhaps by a De-

gree Of Interest (DOI) metric, and quantify proximity are useful.

Finally we note than many tools that support metrics calculation constrain the developer to

using a particular API, programming language or custom file format. While it is possible to

use our Java model API directly (as the collaborative IDE does), metrics clients need not do

so. The use of an XML pipeline architecture provides independence from the way our tools

are implemented; clients are dependent only on an XML schema.

www.manaraa.com

38

2.4.2 Software visualisation

A fundamental difficulty faced by software engineers is the overwhelming volume of infor-

mation about software that must be assimilated. Source code itself is much too detailed and

expansive to efficiently answer the questions of a reader interested in a diverse range of

software forces at various levels of abstraction, and in particular software neighbourhoods.

Metrics alone can go some way toward addressing this problem by selecting and condensing

relevant information about the software. A coupling metric, for example, might convey an

important characteristic of a complex class in a single value. Even so, the sheer scale of in-

dustrial software and the large number of dimensions for which pertinent measurements

might be obtained means that raw metric data is more likely to contribute to the problem of

information overload than its solution. Large tables of values, as produced by some software

development tools, are an inadequate means of communicating information to humans. Data

volume is not the only problem; such tables also detach the calculated metrics from the un-

derlying software structure. A class complexity measure, for example, is set apart from the

source code or UML diagram representing the class itself.

Software visualisation techniques aim to more efficiently communicate information about

software to human observers. A visualisation might directly portray aspects such as an in-

heritance hierarchy, or derived information, including metrics such as code size or complex-

ity. These direct and indirect approaches are complementary and may be combined in a sin-

gle visualisation. For example, classes in a hierarchy visualisation might also depict class

size or complexity, perhaps by varying the colour, size or shape of the class representations.

This combined approach allows metrics to be presented as embellishments of the underlying

structure being measured, thereby reducing the need to mentally map metrics data onto a

suitable conceptual model.

Conventional two dimensional graphs such as histograms, scatter plots and line graphs are

very effective general information visualisation techniques, and may readily be produced

from our models. For some purposes, two dimensional graphs are well suited to the task of

visualising software metrics. Plotting method size against method complexity, for example,

can expose over-complicated methods that are candidates for refactoring. In many cases,

www.manaraa.com

39

however, software metrics present a number of challenges to conventional graphing tech-

niques, including:

• The sheer volume of data. Programs range in size up to tens of millions of lines of

source code. Even when clumped into more manageable units such as methods and

classes, many thousands of components may need to be visualised.

• The highly multi-dimensional nature of software. Software has many facets of inter-

est to software engineers, including lexical structure, inheritance hierarchies, compo-

sition hierarchies, call graphs, dynamic behaviour, control flow, data flow and many

others. This multi-dimensionality is reflected in UML, for example, which provides

over a dozen diagram types, each emphasising a different aspect of the software. No

one model of software can be considered sufficient for full understanding. In order

to resolve design forces and apply design heuristics, software engineers must con-

sider many dimensions in combination.

• The extremely non-linear distributions of many metrics. Often metrics data is

strongly skewed or clustered, and may contain outliers with extreme values. These

effects mean that no single graph is suitable for viewing relationships at all scales.

• The diverse and transient focal points within software that arise as a software engi-

neer investigates design or programming issues. These foci form the centres of se-

mantic software neighbourhoods, in which certain details of the software assume a

level of importance greater than similar features more removed from the area of at-

tention. This creates a need for highly dynamic visualisations, in which the level of

detail can be adjusted quickly and in a non-uniform way.

In order to address problems such as these, software visualisation researchers are investigat-

ing unconventional ways of depicting software. Three dimensional virtual worlds are one

such avenue of exploration. In this work we show how our semantic modelling approach

may be used to construct experimental 3D visualisations of software structure. Software

metrics derived from the semantic model are presented as adornments of the underlying vis-

ual representation, in order to convey a rich set of information in a single coherent form.

www.manaraa.com

40

As noted earlier, our static analysis tools are designed to work in an XML pipeline architec-

ture. We use the term the visualisation pipeline to describe our use of parsing and semantic

modelling tools in conjunction with metrics filters and visualisation software [50], [13]. This

pipeline offers significant advantages for software visualisation research. The benefits of

rigorous and comprehensive modelling over more ad hoc data acquisition have already been

noted. They apply equally to the task of visualisation. The XML pipeline allows use of the

model in a very flexible and open environment. The data is saved in a readable form at each

stage of its transformation. Any tool that can manipulate XML may participate in the pipe-

line, and any part of the pipeline can be modified and re-executed as new information is dis-

covered.

Finally, we note the limitations of our approach for some visualisation applications. Our

model captures static software structure, and is therefore suitable for software visualisation

research that seeks to depict static aspects of software. Another main branch of software

visualisation portrays the dynamic behaviour of software, for which we do not collect data.

Static structure models do, however, provide a useful base for dynamic visualisations. Our

model is also limited to representing a program at some point in time; it does not attempt to

model changes as software structure is developed. A related project [20] extends the model

to include time.

www.manaraa.com

41

C h a p t e r 3

Parsing background

This chapter provides a more thorough background for the subsequent discussion of parsing

and advances our main arguments regarding practical parsing in the context of static analy-

sis. Parsing is one of the most venerable subjects of computer science, with a correspond-

ingly vast literature. It is impossible (and unnecessary) to describe the entire field here.

Rather, we concentrate on establishing a framework for our contribution. The reader seeking

a more general overview is directed to a textbook such as that of Grune and Jacobs [39],

which includes an extensive annotated bibliography. A more formal treatment of parsing,

covering LL(k), several LR classes (but not LALR) and a number of general parsing meth-

ods (but not GLR), is given by Aho and Ullman [2]. The pre-eminent text on LR parsing as

it is conventionally applied in programming languages compilers is by Aho et al. [1].

The reader might be forgiven for questioning the need to revisit parsing theory and practice

in the context of understanding, measuring and visualising software. We suggest, however,

that the practical needs of the software engineering community, and static analysis tool de-

velopers in particular, are less well served by the parsing literature and existing tools than

they might be. Some of the parsing field’s received wisdom is inappropriate for the task of

developing parsers for static analysis, and in the next chapter we offer an alternative better

suited to this task.

Our main goal in this chapter is to provide an intuitive and accessible exposition of the rele-

vant ideas, rather than detailing the formalisms that underpin parsing theory. The existing

www.manaraa.com

42

literature is replete with lemmas and proofs, but is generally more concerned with establish-

ing the legitimacy of theories than with articulating practical and applied considerations.

Our aim, on the other hand, is to present the concepts in a manner that leads naturally into

the objected-oriented implementation described in the following chapter. The remainder of

this chapter is structured like this:

• Section 3.1 reviews relevant parsing concepts and terminology.

• Section 3.2 places LR parsing in context within the wider parsing field, and outlines
the LR parsing classes.

• Section 3.3 describes a series of example grammars that require progressively more
powerful parser classes and shows how these parsers are generated.

• Section 3.4 summarises the chapter.

3.1 Parsing concepts and terminology

This section briefly reprises the

relevant concepts and vocabulary

of parsing, using examples.

Terms being introduced are itali-

cised.

Figure 12 presents a fragment of

the Java Language Specification2

[36] that corresponds with the

parse tree fragment visible in

Figure 5 (page 13). The complete

grammar defines the entire syntax

of Java.

2 Actually, the Java Language Specification provides two grammars for Java: one is used for exposition purposes, while the

other defines the reference implementation of the Java compiler. We use the exposition grammar, as it is fully explained
and designed to be comprehensible. Moreover, the language semantics are defined in terms of the exposition grammar.

Figure 12: Fragment of Java exposition grammar

www.manaraa.com

43

This grammar—like most programming language grammars—belongs to a class known as

context free grammars (CFGs). CFGs define context free languages. CFGs consist of pro-

ductions (also called production rules) that each have a left-hand side (LHS) that consists of

a single nonterminal, and a right-hand side (RHS) that consists of any number of symbols,

where a symbol is either a nonterminal or a terminal. We distinguish between terminals,

which are found in a grammar, and tokens, which are the lexical units that make up a string

to be parsed. Each token in the input string corresponds to one terminal in the grammar.

The set of all terminals used in a language is known as the language’s alphabet. The alpha-

bet of Java, for example, includes the terminals public, class, identifier, {, etc. The

productions of the grammar define the complete (infinite) set of ways in which terminals

may be composed to produce legal sentences of the language. So, for example, every compi-

lable Java program is a sentence in the Java language.

The notation commonly used to describe context free grammars is Backus Naur Form (BNF)

[75]. In parsing literature, many variations of BNF can be found. In this work, we use two:

• In figures in this document, we distinguish nonterminals and terminals typographi-

cally, using italics and bold, respectively, and we group alternative RHSs for any

one LHS, using a | sign to separate the alternative RHSs. Figure 12 is an example.

• Raw text documents, such as those supplied

to our parser generation tools, adhere to the

original style of Naur, in which nonterminals

are delimited by angle brackets. A LHS non-

terminal introduces each production, followed

by ::= and the RHS. Figure 13 shows some

of the productions from the previous figure translated into plain text BNF.

We use the term grammar rule to denote the set of productions that have the same LHS non-

terminal, and refer to a particular grammar rule by the name of the LHS nonterminal; for ex-

ample, we can talk of the classModifier rule of the grammar in Figure 12, which describes

seven productions. We refer to a particular production within a grammar rule by appending

Figure 13: Raw text grammar fragment

www.manaraa.com

44

a subscript with the number of the alternative RHS, for example, the classModifier3 pro-

duction is classmodifier ::= private.

Extended BNF (EBNF) syn-

tax has even more variability

than BNF. Extensions typi-

cally allow optional clauses

and repeated (zero-or-more or

one-or-more) clauses on the RHS. Although EBNF enables more concise grammar descrip-

tions, it does not improve on the fundamental power of BNF and the extensions must be

translated (perhaps automatically) to standard BNF before parser generation. The Java expo-

sition grammar fragment in Figure 12 makes use of one feature of EBNF syntax (the ? char-

acter) to specify optional symbols. The classDeclaration rule translated into non-

extended BNF is shown in Figure 14. Section 4.2.1 addresses the use of EBNF input to

yakyacc.

One nonterminal in a grammar is designated as the start symbol. In this work, we follow the

convention that the first nonterminal (that is, the symbol on the left of the first grammar rule)

is the start symbol. The start symbol provides the type of the root of all parse trees for that

grammar.

We restrict our attention to CFGs that we define as well-formed for programming language

specification:

• Every nonterminal used on the right-hand-side of a production must be defined. That

is, it must appear as a left-hand-side of a production.

• Every nonterminal that is defined must be used. That is, it must appear at least once

on the right-hand-side of a production, or it must be the start symbol.

• The grammar is not cyclic. In other words, it contains no useless productions, which

directly or indirectly allow a left-hand side to be the same as a right-hand side. Such

productions make a grammar infinitely ambiguous: they allow an infinite number of

parse trees for a given input.

Figure 14: EBNF grammar rule expanded to BNF

www.manaraa.com

45

• All nonterminals must be (eventually) resolvable to terminals. An example of a vio-

lation of this constraint is a complete grammar rule nt ::= t nt. Such a rule can

never participate in a finite sentence because then it never resolves to terminals.

A recognizer is a program that can determine whether a given sentence belongs to a lan-

guage; it outputs a Boolean result. A parser is a recognizer that constructs a parse tree (or

trees) that spans the entire sequence of input tokens. The leaf nodes of a parse tree contain

the tokens of the sentence, and the branch nodes contain subtrees that match the RHS of a

production. Thus each branch node corresponds to one LHS nonterminal that has been rec-

ognised. The root node is a branch containing the start symbol.

A single language may be described by any number of grammars. Typically, a standard

grammar is used to provide the official definition of a language, but modified versions of

this grammar are used for parsing. The C++ grammar used in the gcc compiler [38], for ex-

ample, differs markedly from the C++ standard grammar [52]. As we have remarked, the

need for modified versions of grammars arises because of limitations in the power of the

parsing method; the grammar structure best suited to definition and explanation of the lan-

guage is rarely suitable for the widely used parsing algorithms. Grammars intended to com-

municate syntax clearly to a human reader often defeat a parsing automaton because of the

automaton’s restricted context and deterministic behaviour. In general, the weaker the pars-

ing algorithm employed, the more extensive the grammar modification required. The impact

of modification of grammars to meet parser limitations was discussed in Section 2.2.

Grammars may be ambiguous: a single sentence might have more than one valid parse tree.

If all possible grammars for a language are ambiguous, the language itself is ambiguous.

Ambiguous grammars are intractable to deterministic parsing approaches, while more pow-

erful parsers tolerate ambiguity and can produce a parse forest when multiple valid parses

exist. The imagery of a parse forest is somewhat misleading. Ambiguous syntax arises

when two or more RHSs with the same LHS match a segment of the input stream. For this

particular sequence of tokens, multiple parse trees exist. These trees share the same leaves,

and perhaps some branches, but not their topmost branches. However, because the topmost

branches match the same LHS and span the same tokens, they are equivalent from the per-

spective of higher branches in the tree, and can be encapsulated as one ambiguous parse tree

node. This means that ambiguities can always be localised within a parse tree branch, and

www.manaraa.com

46

the tree as a whole will always have one root. The resulting data structure is known as a

packed parse forest. If it also allows distinct parse tree nodes to share sub-trees when those

sub-trees would otherwise be identical copies, it is known as a packed shared parse forest

[100].

3.2 Grammar classes and parsing algorithms

This section outlines the landscape of parsing classes, in order to put LR parsing in its wider

context and explain why LR parsing is of particular interest. It then outlines the main pars-

ing classes internal to LR. Section 3.2.1 begins by briefly portraying the wide view, distin-

guishing context free grammars from other major grammar classes. Section 3.2.2 returns to

our topic of CFGs, and divides context free parsers into those that can handle all CFGs

(slowly) and those that can handle a subset of CFGs (quickly). Restricting our attention fur-

ther to the fast parsers, Sections 3.2.3 and 3.2.4 reprise the two main approaches used for

programming language parsing: LL and LR, respectively. The latter section presents the

main subclasses of LR.

3.2.1 Context free grammars and others

Like nearly all research into parsing of programming languages, this research addresses only

context free grammars because they have adequate descriptive power while remaining trac-

table to fast parsing algorithms. Here we briefly mention Chomsky’s seminal work on gram-

mar classification, in order to place CFGs in their wider linguistic context [10]. Chomsky

defines a hierarchy of grammar classes according to their descriptive power; the classes form

a series of proper subsets. From most to least powerful, they are named Type 0 – Type 3:

• Type 0 grammars are known as phase structured, and allow arbitrary sequences of

symbols on the LHS and RHS of productions (although left-hand sides cannot be

empty). These grammars are extremely powerful—capable of generating all sets that

can be generated—but at the cost of making automatic parser generation intractable

in the general case [45], pp. 182-183.

www.manaraa.com

47

• Type 1 grammars are known as context sensitive. They allow multiple symbols on

the LHS, but require all but one of them to appear again on the RHS. The other

(changed) symbol must be a nonterminal on the LHS, and may be replaced by any

number of symbols on the right. In this way the production provides an unchanged

context for the substitution. (Chomsky actually defines this class of grammars in a

different but equivalent way; we use this definition as it provides an intuitive mean-

ing for the “context” in “context sensitive”.) This class of grammars is somewhat

smaller than Type 0, and somewhat easier to parse. Nevertheless, they remain too

difficult for practical use. In the words of Grune and Jacobs, “Type 0 and Type 1

grammars are well-known to be human unfriendly and will never see wide applica-

tion.” [39], pg. 70. They also note that “all known parsing algorithms for Type 0

and Type 1 grammars have exponential time dependency” (p.72).

• Type 2 grammars are the context free grammars that we employ in this work. They

allow only one nonterminal on the LHS; in other words, the context provided by

Type 1 grammars is missing. Type 2 grammars are much less powerful than Type 1

or 0 grammars, yet remain adequately powerful for practical application to most pro-

gramming languages, and allow automatic parser generation. (This reduction in pars-

ing power, however, is one reason subsequent semantic analysis is necessary.) Pars-

ers for CFGs require polynomial time in the general case, but linear time parsers exist

for some subclasses of CFGs. This distinction is emphasised in Section 3.2.2. Sec-

tions 3.2.3 and 3.2.4 attend to several subclasses of CFGs for which linear time pars-

ers are possible.

• Type 3 grammars are known as regular grammars. They further restrict productions

so that a RHS contains exactly one terminal, optionally followed by one nonterminal.

This restriction makes them equivalent to regular expressions. They are not powerful

enough to describe most programming languages, as they cannot describe nested

constructs such as nested parentheses. They are well suited to the simpler task of

lexical analysis. They can easily be parsed in linear time.

Hereafter, we return our attention to Type 2 grammars (CFGs).

www.manaraa.com

48

3.2.2 General and restricted context free parsers

Automatic parser generation requires an algorithm that can convert a given grammar into a

parser. For context free grammars, many such parsing algorithms have been devised. They

vary in the speed with which the generated parser can process sentences and in their power.

The power of a parsing algorithm is an indication of its generality: a more powerful parsing

algorithm accepts a larger set of grammars than a weaker algorithm.

Several context free parsing algorithms are maximally powerful: they are capable of parsing

all context free languages. In recognition of this power, they are known as general context

free parsers. Examples include the Cocke, Younger, Kasami (CYK) parser [107], Unger’s

parser [103], and the more widely used Earley’s parser [28]. The power of general parsers

comes at the cost of requiring polynomial or even exponential time (relative to the number of

tokens in the sentence) to parse some or all sentences of those grammars. Parsers based on

Earley’s approach have the fastest worst-case performance, requiring O(n2) time for unambi-

guous grammars and O(n3) for ambiguous grammars. No linear time general parsing algo-

rithms are known.

The property of generality is extremely valuable. It allows a parser to accept any CFG,

without imposing the need for the grammar to be transformed. For rigorous static analysis,

this property is particularly important, as explained in Section 2.2. However, computer pro-

grams typically consist of very long sequences of tokens—possibly millions—for which

parsers with polynomial time requirements are impractical. Consequently, programming lan-

guage parsers have made infrequent use of general context free parsing algorithms. Instead,

parser developers have used linear approaches, effectively trading generality for speed. We

argue that, for a broad set of software engineering applications, this trade-off is not necessary

with the use of GLR parsing.

GLR parsing is a special case of general context free parser. Chapter 4 explains the con-

struction of a GLR parser. GLR, which stands for General LR3, is a non-deterministic, direc-

tional, bottom-up parsing approach, also known as Tomita’s parser [100], although the idea

was described earlier by Lang [64] and subsequent improvements have been made by other

3 More fully, General Left to right parser, producing a Rightmost derivation.

www.manaraa.com

49

authors. Most importantly for our purposes, Nozohoor-Farshi [80] corrected a problem that

caused the parser to loop infinitely on ε-transitions, although he described only a recognizer

(rather than a parser). Rekers [91] describes a parser incorporating the fix.

GLR parsers have very poor—O(n3) or worse, depending on implementation—worst case

performance [60]. Tomita, however, recognised the value of the approach for parsing natural

languages, noting that the worst case behaviour is not produced by grammars and sentences

of real natural languages. Tomita demonstrated near-linear performance for short sentences

(some tens of tokens) of natural languages. Nevertheless, GLR parsing has been relatively

little used for parsing of programming languages, in contrast to the linear methods. Tomita’s

emphasis on natural languages and the parser’s inadequate worst-case behaviour have per-

haps contributed to the parsing community passing over GLR parsing for programming lan-

guage applications. In this research, we demonstrate the effectiveness and considerable ad-

vantages of using GLR parsing for the static analysis of programming languages; see Chap-

ter 4.

By sacrificing power, parsers can be made faster. Parsers that are guaranteed to work in lin-

ear time can be obtained by restricting the set of grammars they accept. In order to parse in

linear time, a parser must be deterministic: its behaviour must be tightly prescribed at every

step because each input token must be processed in constant time. In contrast, more power-

ful parsers such as the general parsers discussed above are non-deterministic: they explore

alternative parses until they can discover which are viable, and so their performance can de-

grade with input length.

Two fundamental distinctions can be made regarding the way parsing algorithms tackle the

problem of parsing: whether they are directional or non-directional, and whether they con-

struct parse trees from the top down or the bottom up:

• Directional parsers process tokens in sequence, either from left to right or right to

left. Non-directional parsers process tokens in some more arbitrary order, and so re-

quire the entire sentence to be available in memory. Unsurprisingly, deterministic

behaviour is more readily achievable with directional parsers.

www.manaraa.com

50

• Top-down parsers identify the root of a parse tree first, and then proceed to construct

branches, then leaves. Conversely, a bottom-up parser assembles leaves into

branches, and branches into higher-level branches, until the root is ultimately recog-

nised.

The next two sections look at the dominant parsing approaches today; both are directional, in

order to attain linear time performance. They differ in the order in which they recognise

parse trees: top-down and bottom-up.

3.2.3 LL parsers

This section briefly introduces directional, top-down parsing. Deterministic parsers in this

class are very widely used because they are simple and intuitive. Unfortunately, this class is

relatively weak, and consequently prone to requiring extensive grammar transformation.

Any directional parser that reads the input from left to right and assembles the parse tree

from the top down is known as an LL parser. The first L stands for Left to right (hence di-

rectional) and the second L stands for Leftmost derivation. A leftmost derivation, when pro-

duced by a left to right parser, is simply a top-down construction of the parse tree. The ter-

minology makes more sense when a grammar is viewed as a production mechanism for gen-

erating sentences, rather than as a recognition mechanism for parsing. In effect, a top-down

parser reverses the series of transformations that would occur if the sentence were derived

from the start symbol by repeatedly substituting the leftmost nonterminal in the sentence

with an appropriate RHS.

An equally powerful (and consequently rarely used) class of grammar is RR: a Right to left

parser producing a Rightmost derivation. This is a directional top-down parser that proc-

esses tokens in the reverse order from LL. It is worth noting that although LL and RR are

equally powerful, they are not identical. A grammar that is LL is not necessarily RR and

vice versa. The grammar classes’ power is described as equivalent.

A non-deterministic LL parser is general; it can parse any context free grammar, but not in

linear time. This kind of parser is commonly implemented as a backtracking recursive de-

scent parser. Such a parser explores the space of possible parse trees (given the input seen so

far) using recursive function calls, one function per nonterminal. This is simply a depth-first

www.manaraa.com

51

search strategy through the space of possible parse trees for the input seen so far. Backtrack-

ing occurs when a local search fails to match the actual input tokens and an alternative must

be tried from some higher point in the parse tree.

LL parsers can be made deterministic if they can successfully predict the input whenever the

parser is faced with choosing between alternative RHSs; this eliminates the need to back-

track. If, for a given number k of tokens, an LL parser can always predict the correct RHS

by examining only the next k lookahead tokens, then the parser is said to be LL(k), and has

linear time performance.

In practice k is usually set to one, making LL(1) the dominant top-down parsing approach.

Although higher values of k yield greater parsing power, parser developers often choose to

modify grammars rather than calculate deeper lookaheads because the number of possible

lookaheads grows exponentially with k. Nevertheless, some practical LL(k) parser genera-

tors exist;ANTLR [87], for example.

The work of Parr [86] should be noted here: any parsing algorithm that produces homogene-

ous table entries (or states) containing the same depth of lookahead is necessarily limited to

small values of k because of the combinatorial explosion of lookaheads. Parr shows that

practical LL (and other) parsers with larger values of k are attainable by using different val-

ues of k for different parts of the parser. For realistic grammars, long lookahead is required

in very few parts of the grammar, so parsers with heterogeneous table entries can mitigate

the effects of lookahead explosion by using high values of k only where it is essential. Parr’s

work elevates LL(k) parsing for k > 1 to a practical parsing approach. (Parr obtains the same

conclusion for LR parsing classes, except for canonical LR(k), which relies on full looka-

head for state generation. We revisit this issue below and obtain a better result in Chapter 4.)

Nevertheless, the power of LL(k) remains fundamentally limited by its need to make predic-

tions based on lookahead. Users of LL(k) parsers typically have to make substantial modifi-

cations to grammars in order to avoid grammar constructs that defeat the algorithm. A fre-

quent grammar transformation is known as left factoring, in which ambiguities caused by

common prefixes in two or more RHSes are removed by forcing the prefix into a common

production. Likewise, left recursive productions always confound deterministic LL algo-

rithms and must be eliminated from the grammar. A left recursive production is one in

www.manaraa.com

52

which the first nonterminal on a RHS is, after zero or more productions are applied, the same

as the LHS; see classModifiers2, in Figure 12 for an example.

While directional, top-down parsing is perennially popular because of its accessibility, it is

not well suited to the task of parsing without having to modify the grammar, and hence not

well suited to our purposes. The next alternative, directional bottom-up parsing, presents

much better characteristics.

3.2.4 LR parsers

A directional parser that reads the input string from left to right and constructs the parse tree

from the bottom up is called LR. As before, the L, indicates direction: Left to right. The R

denotes a Rightmost derivation, implying bottom-up construction. An RL parser is the right

to left equivalent of LR (and, like RR, is rarely used). Like most parsing literature, we ig-

nore RL parsers.

Directional, bottom-up parsers are more complex to construct and harder for humans to un-

derstand, but they offer a significant advantage over top-down: prediction is unnecessary.

An LL parser makes decisions (predictions) as soon as possible, while an LR parser defers

decisions for a long as possible. In LR, recognition of a nonterminal is deferred until all its

RHS symbols have been seen. This means an LR parser has a richer context to work with

than an LL parser. At the same point in the input, an LR parser will have constructed less of

the tree because it has deferred decisions until it sees more.

As with LL parsers, LR parsers are general if they are non-deterministic. This is exactly the

approach taken by Tomita’s parser, hence the name General LR (GLR). As previously

noted, however, GLR is not linear in the worst case, and the programming language parsing

community has concentrated on deterministic LR approaches, despiteTomita’s [97] finding

that in practice , near-linear performance is exhibited by GLR parsers for real sentences of

natural languages.

The capabilities of LR parsers are derived directly from the characteristics of Push-Down

Automata; this class of parser is the result of using PDAs to parse. The various subclasses of

LR such as SLR and LALR arise from different strategies for configuring the PDA. Re-

markably, the most powerful approach, LR(k), was also the first [61].

www.manaraa.com

53

A PDA is a finite state machine augmented by a stack that records states traversed. The use

of a stack improves the power of the state automaton, allowing it to track nested constructs,

such as parentheses. Intuitively, a PDA can be viewed as using states to track the progres-

sion of a parse through the RHS of a production, while using the stack to track nesting of

productions. In Section 3.3 we provide several examples of PDA construction and execu-

tion. For now, this intuitive explanation is sufficient to introduce the two basic actions of a

PDA:

• Shift actions change the automaton’s state, by consuming a token and taking a transi-

tion to another state. In effect, these actions simply record the presence of the token

and move on.

• Reduce actions occur when a complete production has been recognised. They pop

the PDA to an earlier state—one expecting to see the recognised nonterminal. A re-

duce action is always followed by a goto action that consumes the newly reduced

non-terminal and moves the machine to a new state. A goto action is just like a shift,

except it consumes a nonterminal instead of a terminal. The result of a reduction is to

take the PDA back to the state it was in before seeing the recognised nonterminal,

and then the goto consumes that nonterminal and moves to a new state.

A deterministic PDA must be able to choose its next action—a shift or reduce—by examin-

ing only the current state and the current lookahead, i.e. the next k tokens in the input stream.

It is this property of allowing only one action that makes the PDA deterministic. Shift ac-

tions are straightforward: a shift always matches the next single token, which uniquely iden-

tifies the next state. Consequently, PDA states never contain conflicting shift actions. A

state may, however, contain any number of reductions and only one may be chosen if the

automaton is to remain deterministic. Each reduction can potentially lead to a different state,

and hence may be followed by a different sequence of tokens. If these lookahead sequences

are disjoint, the state can always choose the right reduction. If not, the state contains a re-

duce-reduce conflict. Similarly, if a shift action and the sequence of tokens that follow it co-

incides with the lookahead of a reduce action, a shift-reduce conflict occurs. A state contain-

ing either type of conflict is described as inadequate. If any state is inadequate, the parsing

algorithm fails for the grammar as a whole and a deterministic parser cannot be generated

using this algorithm.

www.manaraa.com

54

Inadequate states can sometimes be avoided by using deeper lookahead, or by using more

states in the automaton in such a way that fewer lookaheads apply in individual states. The

latter strategy is used in canonical LR(k), which minimises the potential for ambiguities by

differentiating the parser’s context into as many states as possible. This is the source of the

approach’s power, but also its downfall for practical application: it increases the number of

states by orders of magnitude, because the possible future inputs to the parser must be antici-

pated by the states.

SLR(k) and LALR(k) parsers do not proliferate states like LR(k). In fact, they use exactly

the same set of states as LR(0), differing only in their use of lookahead to choose parser ac-

tions. SLR stands for Simple LR, so named because it uses a simplistic approach to calculat-

ing lookahead sets: it derives from the grammar a covering approximation of the actual loo-

kahead sets, giving a parser that is much more powerful than LR(0). Because the lookahead

is a superset of the actual possibilities, SLR(k) may still fail to resolve some ambiguities that

cannot occur in reality. LALR(k) improves the lookahead calculation until it is optimal

given the restricted number of states available, hence its name: Look Ahead LR.

As with LL parsing, LR lookahead depth is usually restricted to 1 to avoid combinatorial ex-

plosions. As we noted earlier, Parr [86] adopts heterogeneous depths of k to make larger val-

ues of k practical. Even so, he uses a covering approximation of the real lookahead (in a

manner akin to SLR lookahead calculation) to keep lookahead calculation time linear. His

approach does not extend to canonical LR(k) parsing. He states “The LR(k) parsing method

has little to gain from the linear approximation analysis as the number of parser states is ex-

ponential and full k-lookahead info must be moved along during state construction in case it

is needed.” In Chapter 4 we present a practical approach for

calculating heterogeneous depths of k using exact (not approxi-

mate) lookahead that works for LR parsers up to and including

full LR(k).

Figure 15 depicts the relative power of those LR grammar

classes that are proper subsets. The situation is less clear cut

when values of k greater than 1 are used for SLR(k) and

Figure 15: Hierarchy of LR
grammar classes

www.manaraa.com

55

LALR(k). The outermost class, GLR, is equivalent to the class of context free grammars.

As we explained in Section 2.2, LALR(1) is today the dominant bottom-up parsing ap-

proach; higher values of k or more powerful algorithms are relatively rare in practice. Many

LALR(1) parser generators are available, including the widely used yacc and bison. Newer

versions of bison also include a GLR option, but a recent paper indicates the implementation

is seriously flawed: “… the present Bison ‘GLR’ implementation merely splits stacks when

conflicts are encountered, so it displays exponential growth in memory requirements which

makes it impractical.” [56].

For tasks such as compiler construction, the limits of LL(k) or LALR(1) are generally toler-

ated (as indicated by the number of compilers using deterministic parsing technology), al-

though they can be a substantial burden on developers, and complex languages such as C++

push the limits of what is possible with these technologies.

For the purposes of static analysis of software, however, grammar modifications are even

less desirable. In the interests of rigour and communicability, identification and measure-

ment of syntactic features should be defined in terms of a language’s standard grammar. For

example, a metric that counts the number of declarations in a program should define declara-

tion in terms of the language standard, since this is what the language’s community under-

stands. If a parse tree reflects a non-standard grammar, its usefulness for deriving syntactic

metrics is compromised. A metric such as the number of expressions per statement, for ex-

ample, is sensitive to perturbations of expression and statement syntax. Similarly, semantic

constructs are predicated upon, and described in terms of, syntactic constructs, so confor-

mance to a standard grammar offers significant advantages for semantic modelling and met-

rics of semantic features.

Much metrics literature treats lightly the problem of rigorously defining features of software

to be measured, assuming that casual concepts of features such as classes, inheritance, meth-

ods, declarations, expressions, etc are adequate. We argue, however, that these entities

should be precisely defined, that doing so is often less straightforward than might be ex-

pected, and that some metrics are very sensitive to variations in definitions. For example, a

metric that counts the methods of a class should define precisely what is meant by the term

method. Does it include constructors, compiler-generated methods, overloaded operators

www.manaraa.com

56

and instantiated template methods? How does inheritance and method overloading affect the

count? The use of standard grammars (and semantics) provides a definitive basis for de-

scribing which language features are included.

For completeness, we note that some grammar transformations can be automated. For ex-

ample, [92] provides techniques for modifying grammars to conform to various LR sub-

classes. Techniques such as these guarantee accuracy, but detract from the original grammar

writer’s communication efforts and interfere with software models and metrics in the same

way as manual interventions.

These considerations provide motivation for questioning the dominance of LALR(1). We

(and other authors) find that stronger parsing classes are in fact practical. Consequently we

suggest that static analysis tool developers forego the usual approach of transforming gram-

mars to accommodate the limits of LL(k) or LALR(1), and instead use a parser generator that

applies algorithms sufficient for given grammars. For real programming languages, the full

power of LALR(k) and LR(k) can be obtained while avoiding the proliferation of states and

lookaheads that has historically made these parser classes unusable. If even these classes

prove inadequate, GLR parsers can be used. Chapter 4 describes a tool that delivers the full

spectrum of LR parser powers.

3.3 LR parser classes—an escalating example

The landscape of LR parser classes is complex (and some LR classes have been omitted

here, NQLALR(k), for example [24]), and the situation is not helped by the convoluted evo-

lution of ideas in the field, or the often theoretically strong but less practical treatment in the

literature. In this section we present a series of examples showing the construction of LR

parsers of increasing power: LL(1), LR(0), SLR(1), LALR(1), LR(1) and GLR. This esca-

lating approach demonstrates how each parsing class improves upon the previous one. More

significantly, it is consistent with our approach for building hybrid LR parsers by applying

progressively more powerful algorithms to a subset of the state machine, resulting, in this

case, in an LR(1) parser being built without proliferating states. This progression shows also

how GLR naturally extends the linear LR parsers by introducing nondeterminism in a con-

www.manaraa.com

57

trolled way, thus enabling it to deal

with programming languages too

complex for lesser approaches.

In these examples, we ignore parse

tree construction, in order to concen-

trate on the parsing process itself.

3.3.1 LL(1) parsing

Figure 16 shows

a grammar that

generates only

three possible

sentences, which

are shown in the

same figure.

Parse trees for these sentences are in Figure 17.

In order to parse a sentence, we must read the raw tokens of the sentence and derive a valid

parse tree, if one exists. For the language of Figure 16, the number of possible sentences is

finite (exactly 3). Consequently, constructing a parser for this language is trivial; the parser

need only enumerate the possibilities and compare the input with them.

A recursive grammar, however, can generate an infinite number of sentences. In Figure 18,

the original grammar is extended with a recursive production, and an example sentence

shown. (Changes from the previous grammar are highlighted.) Figure 19 gives an example

parse tree.

Although the sentences of this language are innumer-

able, parsing is still simple: we could add a loop to our

earlier parser in order to recognise the series of state-

ments. But if we were to continue to add produc-

tions—including recursive productions—to the

Figure 16: A grammar for a trivial language,
and some sentences it generates

Figure 17: Example sentences and parse trees

Figure 18: A recursive grammar
and example sentence

www.manaraa.com

58

grammar, a generated parser would require a systematic way of tracking the state of the parse

in order to know what choices were possible at any point in the input stream. An intuitive

and widely used solution to this problem is a recursive descent parser. Figure 20 provides an

example recursive descent parser for this grammar. For simplicity, this program recognises

the language but does not build a parse

tree. An appropriate scanner is assumed.

A recursive descent parser typically has

one method for each nonterminal of the

grammar. The runtime stack (of method

invocations) is used implicitly to keep

track of the nesting of productions as

they are recognised. This leaves individ-

ual methods with two simple responsi-

bilities:

• To keep track of the position of

the parse as it steps along the se-

quence of symbols in the right-

hand-side of a production. For

example the parseAssignment()

method sequentially matches the

symbols id = id ; on the right-

Figure 19: Example parse tree for recursive grammar

Figure 20: A recursive descent parser

www.manaraa.com

59

hand-side of an assignment production.

• To choose which productions of a nonterminal match the input. For example the

parseStatement() method uses the current lookahead token to choose between a

declaration and an assignment.

The example parser of Figure 20 examines the next token in the input stream in order to

choose between alternative productions. In doing so, it attempts to predict which tokens it

will see in the near future. Consequently, this type of recursive descent parser is known as a

predictive parser. For the given grammar, it is possible to distinguish between alternative

productions using one token of lookahead, because the set of tokens that may begin a decla-

ration (int, bool) is disjoint from the set of tokens that may begin an assignment (id).

Predictive parsers that use k tokens of lookahead can handle the class of grammars known as

LL(k): a left-to-right parse producing a leftmost derivation using k tokens of lookahead.

Their behaviour is deterministic because they always choose one option, as opposed to ex-

ploring all options.

The need to accurately predict right-hand sides is the limiting factor on the power of this

parsing approach. A recursive descent parser assembles a parse tree from the top down.

That is, it recognises the root node and descending branches before recognising a leaf node.

As it descends, it must choose between alternative productions (such as declaration and

assignment) in order to construct the correct branch—and to know which method to call).

At the time it makes these decisions, it has not yet seen the tokens that will eventually make

up the production being chosen.

3.3.2 LL(1) parsing using automata

As noted above, each method in a predictive parser must keep track of its position in the se-

quence of symbols on the right hand side of the production it is attempting to recognise, and

when faced with alternative productions must use lookahead tokens to choose which is ap-

plicable. In the program of Figure 20, this is done using raw programming language con-

structs: sequential statements track progress through a production and if-statements choose

between productions. The same behaviour can be achieved using a set of simple Determinis-

tic Finite Automata (DFAs) that track the state of the parse of a production.

www.manaraa.com

60

Figure 21 provides a

set of DFAs based on

the grammar of

Figure 16. (For sim-

plicity, the original

grammar is used here

instead of the recur-

sive grammar of

Figure 18.) The

guard conditions on

the transitions from

state 1 indicate the

need for lookahead to

choose between the

transitions. Each DFA can be mechanically produced from the grammar’s productions like

this:

for each nonterminal, N

 make a start state N0

for each production, N ::= s1 s2 s3…

 end N0

 for each si

 make a new state, ei

 add a transition from end to ei

 end ei

 add a reduction of N ::= s1 s2 s3… to end

if any state has two or more transitions on the same symbol

 merge the destination states

add guard conditions to choose between transitions on nonterminals

The guard condition on a transition is the set of tokens that can begin that nonterminal. (This

is known as that nonterminal’s first set.)

Given this set of DFAs, it is straightforward to implement a predictive parser similar to that

of Figure 20 in which each method explicitly implements one of the above automata. Each

Figure 21: Recursive descent deterministic finite automata

www.manaraa.com

61

transition on a nonterminal involves invoking another parser method (which runs another

automaton), and each transition on a terminal requires checking that the terminal exists in the

input. Choices between transitions are made by comparing the lookahead token to the tokens

in the first sets of the nonterminals.

It is not strictly necessary to implement the automata as methods. The methods—and the

runtime stack that implicitly tracks their nesting—could be replaced with an explicit stack

that records which automata are currently active, and which state each automaton currently

occupies. In this way, a nesting set of DFAs can parse LL(1) languages.

3.3.3 LR(0) parsing

The weak point of LL parsing is its need to

make predictions based on limited context.

If a grammar allows two productions that

begin with the same token(s) to occur in

the same context, the approach fails. For

example, Figure 22 extends the base

grammar of Figure 16 with the production

type ::= id. This allows a declaration to begin with an id, so that an LL parser can no

longer tell from one token of lookahead whether it is faced with a declaration or an as-

signment.

Increasing the lookahead to two would solve this problem for the given example. This is not

a general solution, however. The example of Figure 23 allows an arbitrary number of identi-

cal tokens to begin variableValue and literalValue. Either production allows nested paren-

theses to an arbitrary depth. No fixed number of lookahead tokens will be adequate for all

sentences of this grammar. This problem is a compelling reason to avoid making predictions

by deferring decisions until more input has been seen.

Figure 22: Grammar modified to
defeat LL(1) parser

www.manaraa.com

62

 An intuitively appealing (but ulti-

mately inadequate) approach is to com-

bine the separate DFAs of an LL parser

(such as that of Figure 21) into a single

DFA that tracks parse state until the

complete RHS of a production has been

seen. For the grammars introduced

prior to Figure 23, this approach would

work. However, Context-Free Grammars have greater expressive power than DFAs (which

are equivalent to regular expressions). For the grammar of Figure 23, it is not possible to

construct a DFA that can recognise this language, because a DFA has no ability to track the

nesting levels of parentheses.

 Fortunately, a simple improvement to the power of a DFA adds this ability. A Push-Down

Automaton (PDA) is a DFA that uses a stack to track its progress through states, and can pop

the stack to jump back to earlier states. In Section 3.3.2, we noted that a set of DFAs plus a

stack is adequate for LL(1) parsing. The stack provides the ability to track nested produc-

tions in order to ensure that symbols—such as parentheses—match. If we use a single PDA

in place of the nesting LL(1) automata, we will retain the ability to track nested productions

(via the PDA stack), and add the ability to defer recognising productions until they are com-

plete.

We now explain

how a PDA can be

derived from a set of

LL DFAs, which in

turn were derived

from the original

productions.

Figure 24 depicts a

nondeterministic

automaton derived

from the LL auto-

Figure 23: Grammar modified to defeat LL(k) parser

Figure 24: Combining LL automata into a nondeterministic PDA

www.manaraa.com

63

mata of Figure 21. A parser at the start of the token stream is in State 1, expecting to see an

assignment or a declaration. In an LL parser, we must predict which production is to be ex-

panded, by using lookahead. If, on the other hand, we choose to defer this decision, then we

must simultaneously occupy the start states for declaration (state 4) and assignment (state

13). We must also continue to occupy state 1, because we have not yet found out which

transition to take in order to depart. We can introduce this behaviour by adding epsilon tran-

sitions from state 1 to states 4 and 13. Epsilon (ε) represents empty input; that is, a transition

on epsilon can be taken without consuming input.

State 4 begins a declaration. It expects to see a type. We can defer recognising the type until

we have actually seen it, by adding an ε−transition to the start state of the type automaton,

state 8. Likewise, we add an ε−transition from every state with an outgoing transition on a

nonterminal, to the start state of the automaton for that nonterminal.

Epsilon transitions introduce nondeterminism into the state machine; it can occupy more than

one state at a time. We can eliminate nondeterminism by merging states, like this:

• For each state, find the set of states reachable on ε.

• Copy all outgoing transitions from those states into the original state.

• If the resulting state is still nondeterministic (because it now has multiple transitions

on the same

input), merge

the set of

states reach-

able on that

input.

Figure 25 shows the

resulting PDA, after

ε−transitions are re-

moved. Note that as

the automata have

Figure 25: LR(0) Pushdown Automaton

www.manaraa.com

64

been combined into a sin-

gle automaton, the start

states of all nonterminals

except state 1 have been

merged into other states.

State 1 is the start state of

the start nonterminal

statement, and so has

become the start state of

the PDA. The start states

of all other productions

are now unreachable, and so have been eliminated from the machine.

Figure 26 shows an example of the operation of the PDA as it parses the sentence:

int i;

The stacks (numbered 1 – 11) in the figure show the sequential configurations of the PDA.

The topmost state of each stack is the current state of the PDA. This figure relies on the

PDA terminology:

• A shift occurs when the PDA takes a transition on a terminal. Shifts always push one

more state onto the stack. It becomes the current state.

• A goto occurs when the PDA takes a transition on a nonterminal. Like shifts, gotos

push the new current state onto the stack.

• A reduction pops a number of states off the stack. The newly exposed topmost state

becomes the current state of the automaton. Reductions occur when a state recog-

nises a production; the number of states popped equals the number of symbols on the

RHS of the production. In our notation, reductions are denoted by a zigzag arrow

showing the number of states popped. A reduction is always followed by a goto, be-

cause the reduction always yields a nonterminal (from the LHS of the recognised

production).

Figure 26: Execution of PDA

www.manaraa.com

65

• Shifts, gotos and reductions are known as parser actions.

The behaviour of the parser shown in Figure 26 is:

1. The stack is initialised by pushing the start state: State 1.

2. The first token is int, so the PDA shifts to State 9. State 9 is pushed onto the top of

the stack. State 1 remains in the stack, so that the PDA may return to it later, when it

has recognised a complete production.

3. State 9 recognises that the token int corresponds to the RHS of a type production

(type ::= int). This causes the PDA to reduce the production: it pops the states trav-

ersed in recognising the production and returns to the state that it occupied before

those symbols were encountered. In this case the RHS contains only one symbol, the

token int, so the stack is popped once and the PDA jumps back to the last uncovered

state, State 1.

4. Now that it has recognised a nonterminal symbol (type), the PDA takes a goto transi-

tion on that nonterminal. This leads to state 5, which is pushed.

5. The next input is the token id. The parser shifts to state 12.

6. State 12 reduces variable ::= id, which pops the PDA back to state 5.

7. A goto on variable leads to state 6.

8. A shift on ; leads to state 7.

9. State 7 recognises a declaration (declaration ::= type id ;), so pops the three symbols

of the RHS off the stack and returns to the uncovered state, state 1.

10. A goto on declaration leads to state 2.

11. Finally, state 2 recognises the entire statement and pops back to state 1.

www.manaraa.com

66

At this point, the PDA has returned to the initial state. No other states appear on the stack

and no unprocessed input remains. The start symbol of the grammar, statement, has just

been recognised, so the parse is successful.

Push-down automata that use no lookahead, such as the example of Figure 25, can parse the

class of grammars known as LR(0). This stands for a left-to-right parse producing a right-

most derivation using zero tokens of lookahead. In the context of a left-to-right parse, the

term rightmost derivation describes a bottom-up parse; that is, leaves are recognised before

branches, and the root is recognised last.

Earlier in this section, we noted that the grammar of Figure 23 defeats an LL(1) parser. We

now construct an LR(0) parser for that grammar to show that LR(0) is equal to the task.

Figure 27 represents an intermediate stage in the construction of the PDA, as separate LL(1)

automata are com-

bined into one

nondeterministic

PDA. Differences

from the automa-

ton of Figure 25

are highlighted.

Epsilon transitions

have been added

from every state

expecting a non-

terminal to the start

state of that non-

terminal. For ex-

ample, state 23

(which expects a

variableValue) has

an ε−transition to

state 21 (which

Figure 27: Partially constructed LR(0) parser
for grammar with nested parentheses

www.manaraa.com

67

begins a variableValue).

Removal of ε−transitions leads to the PDA shown in Figure 28. Note that some states (23

and 28) now have transitions to themselves. This is the result of removing ε−transitions

within (left) recursive productions. For example, state 23 is reached while trying to recog-

nise a variableValue, and it also expects an inner variableValue, which in the previous figure

caused it to have an ε−transition to state 21. When the ε−transition is removed, the transi-

tions out of state 21 are copied to state 23, giving it a self-transition (and a transition to state

22).

Although ε−transit-ions have been removed, the PDA of Figure 28 is still nondeterministic.

State 15 has two transitions on an open parenthesis, reaching states 23 and 28. The final step

in producing a deterministic PDA is to merge these two states into a new state. This appears

Figure 28: LR(0) PDA with ε-transitions removed

www.manaraa.com

68

as state 31 in Figure 29.

The resulting PDA can differentiate between the sentences shown in Figure 23. For exam-

ple, the sentence:

i = (((3)));

produces the sequence of actions shown in Figure 30, which captures the stack configura-

tions up to the point that the nested parentheses have been recognised. (The example stops at

the point where the parser is in state 20. It will subsequently reduce to state 15, goto 16, shift

to 17, and reduce to 1.)

Figure 29: Deterministic LR(0) PDA

www.manaraa.com

69

Figure 30: Execution of PDA as it parses nested parentheses

3.3.4 SLR(1) parsing

At this point, we have seen how to construct

an LR(0) parser, which can handle some

grammars that defeat an LL(1) parser. Many

common grammar constructs, however, also

defeat an LR(0) parser. Figure 31 presents a

modified version of our example grammar,

Figure 31: Grammar modified to require
an SLR(1) parser

www.manaraa.com

70

with changes from the

previous grammar

highlighted.

 This new grammar

eliminates nested pa-

rentheses, but intro-

duces a new problem.

Figure 32 shows the

construction of an

LR(0) PDA, at the

point ε-transitions

have just been re-

moved. State 15 is

still nondeterministic

because it has two

transitions on id, to

states 12 and 27. In the previous example, we resolved a similar problem by merging the

two destination states to form a new state. In this case, however, merging of states 12 and 27

produces a new state, as shown in Figure 33, which is inadequate. State 28 is faced with a

dilemma: it cannot tell whether to reduce the id as a variable or as a methodName. This is

known as a reduce-reduce conflict.

The solution is straightforward: lookahead is used

to choose between the alternatives. Figure 34

shows the same state with lookaheads represented

as guard conditions on the state machine. If the

next token in the input is = or ; then the id should

be reduced as a variable. If the lookahead is an

open parenthesis then the id is a methodName.

Anything else indicates that the sentence contains a

syntax error.

Figure 32: Nondeterministic LR(0) PDA for grammar with methodCall

Figure 33: LR(0) state containing a
reduce-reduce conflict

Figure 34: LR(1) state that eliminates
the conflict

www.manaraa.com

71

A simple way of calculating allowable lookaheads for nonterminals is by analysing the

grammar to find the set of terminals that may follow the nonterminal. This is known as the

nonterminal’s follow set. The algorithm is straightforward, and may be found in any parsing

textbook; we don’t reproduce it here. It is important to note that follow sets include all to-

kens that can ever follow a nonterminal, regardless of where the nonterminal is used in the

grammar. (This limits the power of this approach, as we discuss below.) In our example, a

methodName is always part of a methodCall, so is always followed by an open parenthesis.

A variable may be part of an assignment, in which case it is followed by an equals (=), or

part of a declaration, in which case it is followed by a semicolon (;).

The class of grammars that can be parsed by a PDA using one token of lookahead derived

from follow sets is SLR(1). The term simple evokes the relative ease with which the looka-

head may be calculated. Figure 35 presents the complete SLR(1) PDA for our example. We

show lookahead only on the state that needs it (State 28), but a conventional SLR(1) PDA

would employ lookahead on all reductions, regardless of whether it removes a conflict.

 The problem resolved by lookahead in this example was a reduce-reduce conflict. A similar

problem occurs when

an LR(0) state con-

tains a reduction and

one or more shifts.

This is, unsurpris-

ingly, known as a

shift-reduce conflict.

Figure 36 shows a

grammar similar to

that of Figure 31 that

leads instead to a

shift-reduce conflict:

the LR(0) PDA can-

not choose between

reducing variable ::=

id or shifting the

Figure 35: Deterministic SLR(1) PDA for grammar with methodCall

www.manaraa.com

72

open parenthesis. An SLR(1) PDA

resolves this problem in the same

way it resolved the reduce-reduce

conflict: lookahead is added to the

reduction and shift actions, so the

PDA can decide whether to reduce

(on = or ;) or shift (on (). State 27

in Figure 36 demonstrates the rele-

vant fragment of the SLR(1) solu-

tion.

3.3.5 LALR(1) parsing

We have seen how to add lookahead to an LR(0) parser in order to construct a more power-

ful SLR(1) parser. This additional power, however, is still insufficient to handle many

grammars. Figure 37 presents a modified version of our example grammar, with changes

from the grammar of Figure 31 highlighted.

We have introduced an initializer that follows a variable in a declaration. Conse-

quently, the follow set of variable now includes an open parenthesis. Figure 39 shows the

result of including this new lookahead in the SLR(1) PDA. When an open parenthesis is en-

countered in state 28, the PDA cannot choose between the two possible reductions; the state

is now inadequate.

This problem is an artefact of using follow sets to determine lookahead. While it is true that

an open parenthesis can follow a variable, it

cannot do so in this context. State 28 is encoun-

tered only when parsing an assignment, a con-

text in which an open parenthesis cannot occur.

An open parenthesis follows a variable within a

declaration.

The solution is, of course, to calculate lookahead

by finding which tokens can actually follow a

Figure 36: A grammar that produces an LR(0) shift-reduce
conflict, and its resolution in an SLR(1) PDA
fragment

Figure 37: Grammar modified to require
an LALR(1) parser

www.manaraa.com

73

given reduction, taking context into account. We can

do this by analysing the PDA to determine which

states are reachable on a given reduction. All shifts

from those reachable states provide the 1-lookahead

for that reduction. From Figure 35, it can be seen that

when state 28 reduces variable ::= id, it will pop

to state 15, then goto state 19. State 19 will reduce value ::= variable, pop to state 15

again and goto state 16. The only way to proceed further is to shift on a semicolon, so the

only possible lookahead is a semicolon. We can remove the equals and open parenthesis

lookaheads from the guard condition in Figure 39.

The class of grammars that can be parsed by a PDA constructed in this way, using only loo-

kahead possible in the context of individual states, is LALR(1). The term lookahead evokes

the approach’s emphasis on exact lookahead. The complete LALR(1) PDA for the given

grammar appears in Figure 38. State 28 shows the resolved conflict. As with our earlier ex-

amples, we show

lookaheads only

where needed (on

state 28), whereas

a conventional

LALR(1) PDA

would use looka-

heads on all reduc-

tions.

Figure 38: LALR(1) PDA

Figure 39: SLR(1) PDA fragment
with inadequate state

www.manaraa.com

74

3.3.6 LR(1) parsing

For a given grammar, LR(0), SLR(1) and

LALR(1) automata all share the same set of

states. They differ only in their use of looka-

heads on reductions. No further gains in power

can be made by merely refining lookaheads. It is,

however, not difficult to contrive a grammar that

defeats an LALR(1) parser yet is still tractable

using a PDA; such a grammar is presented in

Figure 40.

This grammar is very similar to the previous example, in which the PDA had to choose be-

tween reducing an id as a variable or as a methodName. In this grammar, however, there are

two places in

which this

choice must

be made:

while looking

for a value

inside an as-

signment (as

before), and

after a type in

a declaration.

Figure 41

shows the par-

tially con-

structed PDA,

at the point

ε−transitions

have just been

removed. As

Figure 40: Grammar modified to require
an LR(1)parser

Figure 41: Nondeterministic LALR(1) PDA (ε−transitions removed)

www.manaraa.com

75

in our previous example, state 15 has two transitions

on id, reaching states 12 and 27. The same situation

now occurs in state 5: it has transitions on id to states

12 and 27. In order to make the PDA deterministic,

we must merge states 12 and 27.

 In our previous examples, we did not encounter a

situation in which the need to merge the same set of

states occurred in more than one place. Had we done

so, we would have applied the rule that sets of states

should be merged uniquely. So, for example, we

would merge states 12 and 27 to create a new state,

and transition to that state from both places where the

nondeterminism occurs (states 5 and 15), as shown in

Figure 42.

As expected, state 28 in Figure 42 has a reduce-

reduce conflict. If we attempt to resolve this conflict

by using LALR(1) lookahead, we find that, as in the

previous example, from state 15 a variable will al-

ways be followed by a semicolon, while a methodname will always be followed by an open

parenthesis. However, from state 5 the lookaheads are reversed: a variable will always be

followed by an open parenthesis, and a methodName by a semicolon. When the lookaheads

are combined, state 28 is once again inadequate, as shown in Figure 43. Thus, this grammar

is not LALR(1).

This problem arose because we found two situations in which states had to be merged, and

attempted to use a single state to handle both conflicts. The solution is, unsurprisingly, to

split state 28 into two: one to merge states 12 and 27 for state 5, and the other to merge states

12 and 27 for state 15, as in Figure 44.

By using more states than an LALR(1) parser, we can avoid some conflicts, thus increasing

the power of the approach. The class of grammars that can be handled by such parsers is

known as LR(1). The complete LR(1) parser is shown in Figure 45.

Figure 42: Reduce-reduce conflict
reachable from two sources

Figure 43: Inadequate LALR(1) state

Figure 44: LR(1) PDA fragment

www.manaraa.com

76

It is worth noting that splitting of inadequate LALR(1) states can eliminate reduce-reduce

conflicts, but not shift-reduce conflicts. All shifts will be replicated in the split states, and so

will continue to conflict with the reduction lookahead in some (or all) of the split states.

As before, this example uses the more powerful parser features—lookahead and state split-

ting—only where needed, whereas conventional LR(1) parsers apply them universally. For

the parser classes discussed prior to LR(1), this amounted to only a minor variation from tra-

dition: we omitted lookahead where it was not necessary. For LR(1) however, the practice

of splitting states only where necessary is a significant variation from standard practice. In

fact, the usual way of constructing LR(1) and LALR(1) PDAs differs markedly from our ap-

proach. A conventional LR(1) approach in effect splits as many states as possible (without

creating duplicates), often without eliminating conflicts. The result is typically a PDA very

much larger than the LALR(1) PDA, often with little or no improvement in power. With our

Figure 45: LR(1) PDA

www.manaraa.com

77

approach, we need only split states

that actually improve the power of

the PDA. This avoids the prolifera-

tion of states that makes LR(1) un-

popular, yet offers its full power.

3.3.7 GLR parsing

Unfortunately, it is easy for a gram-

mar to fall outside even LR(1). Figure 46 presents such a grammar, in which a declaration

begins with a modifier: static, volatile, or abstract. Variable and method declarations

allow different modifiers, but static is common to both. (For simplicity, we have removed

the assignment production from the grammar.)

This grammar produces the PDA shown in Figure 47, in which state 39 cannot choose which

production to reduce, even using accurate 1-lookahead. No opportunity for splitting this

state exists,

because the

conflict occurs

in one context

only.

If the looka-

head were in-

creased, an

LR(k) ap-

proach would

work for this

grammar: the

grammar is

LR(3) but not

LR(1). This is

not a universal

solution, how-

Figure 46: Grammar modified to require a GLR parser

Figure 47: Inadequate LR(1) PDA

www.manaraa.com

78

ever. If the grammar included recursive productions to allow any number of modifiers (as,

for example, the Java standard grammar does), it would not be LR(k) for any k.

Although an LR(1) parser for this grammar cannot parse a sentence such as

static int foo;

a human reader can. The sentence does not contain an initializer, and so foo must be a

methodName. The token static must be an mModifier.

LR push-down automata are constrained by their need to make decisions based on left con-

text alone. When faced with a reduce-reduce or shift-reduce conflict, they simply give up.

As we have seen, the ambiguity may be resolved at some future point, but the automaton

does not persist that far. In contrast, a human who is reading the source from left to right is

able (to some degree) to tolerate ambiguity, continuing to read the sentence until the

ambiguity is resolved by later tokens.

The ability to pursue multiple paths through its state graph can be added to a PDA by allow-

ing the stack to branch. This gives the PDA the ability to continue with all possible paths,

until they cease to be viable. For an unambiguous grammar, all paths but one will eventually

reach a dead end: they will arrive at a state from which there is no exit on the available input.

The remaining path produces the correct parse

For example, Figure 48 shows the execution of the PDA from Figure 47, with the stack

branching when a conflict is encountered. Both branches remain viable for several actions,

but one branch eventually reaches state 6 with an input token of ;. There are no actions pos-

sible in that state on that input, and so the branch is unviable and can be pruned off. The re-

maining branch (which has arrived at state 34) can shift on the available input, and the stack

reverts to its usual (non-branched) form. (The example stops at the point a declaration is

recognised; it will thereafter goto state 2 and reduce to state 1.).

Because inadequate states merely cause branching of the stack rather than outright rejection

of the grammar, the use of a tree-structured stack improves the power of a PDA so that it can

handle all context free grammars, (including ambiguous ones). This power comes at a price,

however. Unlike a simple stack, which always designates one current state, a tree-structured

www.manaraa.com

79

stack can designate any number of current states. While simple-stack PDAs always parse

sentences in linear time (that is, time proportional to the length of the sentence), tree-

structured stack PDAs may exhibit performance that degrades as the input length increases.

In the worst case, the number of current states (and branches) will increase with each token,

requiring time exponential in the length of the sentence. Of course, this degradation can oc-

cur only with grammars that would be rejected by a simple-stack approach; otherwise the

stack would not need to branch.

If two or more branches of the stack eventually arrive at the same state, they will subse-

quently produce identical behaviour in the automaton, until they pop back to earlier, distinct,

states. This replicated behaviour can be used to mitigate the impact of stack branching.

Rather than using a

tree-structured

stack, a graph-

structured stack that

allows both branch-

ing and merging can

ensure that a set of

unique states appear

on top of the stack.

For example, the

stack configuration

5 of Figure 48

(which reaches state

9 via two paths)

would be replaced

by the graph-

structured stack

shown in Figure 49.

The term graph-

structured stack is

due to Tomita [101];

Figure 48: Execution of PDA with branching stack

www.manaraa.com

80

the graph is in fact a directed acyclic graph (DAG). (We shall

later encounter variants that allow cycles and therefore earn the

label graph-structured.)

The use of a graph-structured stack incurs no loss of informa-

tion, so the performance gain does not imply a loss of general-

ity. In this example, when state 9 is popped, both underlying

states are uncovered and the parse proceeds as in the original

example, producing stack configuration 6 of Figure 48.

In practice, the use of a graph-structured stack allows a GLR parser to achieve close to linear

performance for any realistic sentences conforming to a programming language grammar.

For some sequences of tokens, repeated branching is possible, but such sequences are rare in

actual source code.

3.3.8 Dotted items

Using an example, we have informally described a process of incrementally increasing the

power of a parsing automaton. Our parser generator described in the next chapter behaves in

a similar way (although the grammar doesn’t change as it runs!). Conventional descriptions

of parsing algorithms usually take a very different approach: they construct states from dot-

ted items (also called configurations, or just items). Dotted items are productions adorned

with a dot and lookahead. The dot indicates the position of the parser as it progresses along a

RHS, and the lookahead indicates input tokens that must follow the dot. A single production

in the grammar may lead to many dotted items, depending on the length of the RHS and the

depth of lookahead. Figure 50 provides an example containing the three dotted items de-

rived from the super grammar rule (of Figure 12) using lookahead depth of 1. PDA states

are formed by combining dotted items that can be encountered at the same point in the parse

to produce a canonical LR(k) PDA. Details may be

found in [1].

Figure 49: Graph-structured
stack configuration

Figure 50: Dotted items derived
from super rule

www.manaraa.com

81

3.4 Chapter summary

This chapter covers sufficient background information on parsing to establish our area of in-

terest and provide a platform from which to begin a deeper discussion. We are interested in

LR parsing because of its linear performance and power. Nevertheless, the currently domi-

nant LR subclasses, LL(1) and LALR(1), are insufficiently powerful for our purposes, be-

cause we are concerned with parsing grammars without first transforming them.

We will show an improved LR parser generation approach that provides more power and

flexibility than is currently available. These improvements make no difference to the theo-

retical power of the parser classes, but they extend the range of parsers that may be con-

structed in practice.

When these improved deterministic parsers nevertheless prove inadequate for a particular

grammar, we advocate the use of GLR parsing. We find that GLR parsing need not be re-

stricted to parsing natural languages, and is in fact well suited to the problem of parsing pro-

gramming languages when grammar modification is to be avoided.

The use of more powerful (near-) linear parsing classes, and the philosophy of fitting the

parsing technology to the grammar rather than the other way around, differs from normal

practice. To some degree, these differences reflect different tradeoffs present in the static

analysis domain than in a more traditional application such as a compiler. We are concerned

with constructing a parse tree that faithfully reflects the standard grammar, while a compiler

writer might sacrifice parse tree fidelity for the ability to define arbitrary parser actions and

provide informative syntax error messages. Nevertheless, even in a traditional domain such

as compiler writing, we recognise an historical over-emphasis on LL(1) and particularly

LALR(1), and suggest that the alternative parser classes deserve more attention even for tra-

ditional applications.

www.manaraa.com

82

C h a p t e r 4

Yakyacc: Yet another kind of yacc

This chapter describes yakyacc, a new parser generator. We first reprise why it was neces-

sary to write another parser generation tool rather than use existing ones, and note how

yakyacc differs from and improves upon existing tools. Subsequent sections describe the

design of yakyacc: its architecture and mechanisms for grammar input and parser output, and

the object-oriented design of the parser generator, including its algorithms. Finally this chap-

ter relates the contribution made by yakyacc to the existing parsing literature.

4.1 Yet another parser generator?

When yacc—the archetypal parser generator—was new, the name yet another compiler

compiler was facetious; compiler compilers were still novel. Our use of yet another in

yakyacc is literal (as well as derivative), acknowledging yacc as the progenitor of dozens of

parser generation tools. Many examples can be found in catalogues of compiler construction

tools, such as [74].

The profusion of parser generators available today reflects the widespread applicability of

parsing technology in diverse software engineering settings. However it does not, as we

have stated, indicate a correspondingly high diversity in parsing algorithms used in practice;

the great majority of software engineering applications use LALR(1), LL(1), or LL(k) parser

generators. Bison is the first widely-used parser generator to attempt support of GLR, and it

www.manaraa.com

83

may serve as a vehicle for adoption of more powerful parsing, but as we have remarked the

current implementation may be incorrect.

Parser generators vary not only in the parsing algorithms they implement, but also in their

input and output formats: the languages used to describe grammars (typically variants of

BNF) and the languages in which generated programs are written. Yacc, for example, reads

a grammar defined using its own particular syntax—a mix of BNF-like rules, parser direc-

tives and embedded C code actions—and generates a parser in C code.

These variations in input and, especially, output formats are responsible for much of the pro-

liferation of parser generators. A generated parser is a software component that is typically

integrated into some larger application. Yacc, for example, is a natural choice for generating

a parser to be integrated into software developments using C, but may be less suitable for

other development cultures. In consequence, many variants of yacc exist primarily to ac-

commodate different languages and platforms. Examples include yacc++, SML-yacc, perl-

byacc, and pcyacc. Other LALR(1) parser generators—whether or not they explicitly share

lineage with yacc—fill the same niche for different development environments.

The need to use different parser generators to target different execution environments is a

regrettable complication, particularly when generators differ in their capabilities, input for-

mats, user interfaces, and generated APIs. Yakyacc solves this problem. It offers greater

flexibility than existing tools by decoupling grammar input and parser output from the parser

generator itself:

• Instead of requiring use of a particular input syntax, yakyacc reads a generated XML

grammar definition. This allows grammars to be supplied to yakyacc from unre-

stricted sources, by mapping them to yakyacc’s XML input format. For example, a

grammar defined in an EBNF variant, and another grammar using yacc syntax can

both be automatically translated into yakyacc’s XML input. (We develop these input

translators using a yakyacc-generated parser.)

• Yakyacc generates an XML file that describes the parsing automaton. This XML file

can then be transformed into a parser in any language. We use XSLT to achieve the

transformation, so that by supplying a different stylesheet, a different generated

www.manaraa.com

84

parser can be produced. As well as allowing us to generate code in any language,

this approach also lets us vary the style of code, for example, by generating a table-

driven parser or an OO state-based parser, or to generate a nondeterministic (GLR)

parser when the underlying PDA is inadequate.

At the price of adding one more yacc descendant to an already large family, yakyacc’s de-

coupled input and output formats reduce the need for continued multiplication of LR parser

generators. However, the primary contribution of yakyacc is not its adaptability to different

programming environments, but its ability to accommodate given grammars by applying

suitable parsing algorithms.

As discussed earlier, grammar modification is undesirable, particularly for static analysis

purposes. Yakyacc eliminates the need for grammar modification, instead adapting the

choice of parsing algorithm to a given grammar. Yakyacc generates practical LR(0),

SLR(k), LALR(k), LR(k), and GLR parsers as necessary. This is a broader range of bottom-

up parsing algorithms than is available in any other single tool of which we are aware, and

includes some powerful parsing classes that are rarely supported elsewhere. In particular,

generators that can produce LALR(k) parsers for values of k greater than 1 are rare, and gen-

erators of practical (that is, minimal state) LR(k) parsers for any k other than 0 are unavail-

able, to our knowledge, although they are the subject of a number of publications and ex-

perimental tools, as noted in Section 4.4.

Yakyacc employs an escalating parsing algorithm that incrementally improves the power of

the parser until it is adequate (or until inadequacies are shown to be unresolvable). Progres-

sively more powerful parsing algorithms are applied to states of the PDA only as necessary

to remove conflicts, producing a hybrid automaton with states of differing levels of power

and employing heterogeneous lookahead depth. This approach enables the construction of

parsers that are as simple as possible for the task they perform. More critically, it avoids the

combinatorial explosions in state or lookahead space that previously made the more power-

ful parsing classes impractical. As we later explain, earlier authors have made some progress

in the same direction, but so far without delivering to the software engineering community a

parsing approach that improves on current practice enough to see widespread adoption.

www.manaraa.com

85

The end result of our changed approach to parsing is the ability to parse any programming

language according to a given grammar. The use of standard grammars for parsing allows

software models and metrics to be defined and constructed more rigorously, because the syn-

tax trees they describe conform to the standard. Additional advantages include the produc-

tivity gains made possible by not having to transform grammars, and reduced complexity in

static analysis tools because phases can remain decoupled.

4.2 Yakyacc architecture

As explained in the previous section, yakyacc decouples the primary task of a parser genera-

tor—transformation of a grammar into a push-down automaton—from the tasks of process-

ing a grammar description and generating code. This separation is reflected in the architec-

ture of yakyacc and its supporting tools.

Figure 51 shows the sequence of trans-

formations involved in producing a

parser. In this example, a source docu-

ment that uses BNF to describe a gram-

mar is supplied. The document contains

only the productions that comprise the

grammar, such as might be taken directly

from a language standard. Our bnf2xml

utility converts the grammar to the XML

format expected by yakyacc. Yakyacc

reads it and emits an XML description of

a PDA of appropriate power for that

grammar. Finally, a stylesheet-driven

transformation is applied by XSLT to

produce source code for a parser.

The resulting parser may subsequently be

compiled and, with a scanner added, used

as a stand-alone program or combined

Figure 51: Decoupled architecture of yakyacc

www.manaraa.com

86

into some other application. In our

work, we typically use the resulting

parser as the first step in a metrics and

visualisation pipeline; the parser emits

a parse tree as an XML document, as

shown in Figure 52. Yakyacc itself

does not directly participate in the

pipeline. Rather, it generates a tool

used in the pipeline.

The parser generation process as de-

scribed above does not include user-

defined parsing actions such as might

be expected by users of yacc and simi-

lar tools. For our purposes, the only

action to be performed by a parser is

construction of a parse tree, and this can be done without user direction: the tree conforms to

the grammar. The resulting data structure is a complete description of the parse; it may sub-

sequently be traversed by other tools to perform arbitrary actions.

Our approach of automatically producing a parse tree does not imply a loss of generality, as

custom actions may be performed at any later time while examining the tree. This allows

developers freedom to change actions without interfering with parsing. In our research con-

text, this means that code for tasks such as calculating metrics remains decoupled from

parser generation and may be changed without regenerating the parser. The price paid for

this flexibility is the space needed for storing parse trees, but this is a relatively minor

consideration in most modern software environments. In our experiments on a corpus of

open-source Java projects it has not produced any problems.

Figure 52: Generating a parser for use in a pipeline

www.manaraa.com

87

Although the ability to specify custom parser

actions is unnecessary for our purposes, it is not

prevented by yakyacc. Custom parser actions

are irrelevant to the core task of transforming a

grammar into a PDA, so yakyacc itself is not

concerned with them. For completeness, how-

ever, we note that actions embedded in a source

grammar could be extracted by a utility and

supplied to the code generation phase, as shown

in Figure 53. In this way, a source file written

for yacc, for example, could be supplied to

yakyacc and the generated parser would act as

expected—even when the original grammar is

intractable to yacc’s LALR(1) approach. As we

have no need of it, we have not yet implemented

such a utility, although the design of the gener-

ated code makes provision for it through the ab-

stract factory design pattern [35] for parse tree

construction (see Section 4.3.1). A builder object could execute the custom parser actions

rather than constructing the parse tree.

4.2.1 Input of grammars

 Grammars are commonly described in a variety of BNF dialects. Variations occur in the

way terminals are distinguished from nonterminals (typographic differences, angle brackets

around nonterminals, uppercase terminals, etc), lexical differences in punctuation characters

(::=, , etc), and syntactic differences (whether alternative RHSs are allowed without re-

peating the LHS, how productions are terminated, etc). BNF is also routinely extended

(EBNF) to include syntax for alternate, optional and repeating clauses. These extensions al-

low more concise representation of a grammar, without improving on the expressive power

of BNF.

 Various parser generators specify their own syntax for grammar input, usually including fea-

tures such as action specifications and directives to the parser generator. This requires the

yakyacc

yacc2xml

xslt

Grammar
with

actions

pda.xml

grammar.xml

Parser.c

Action
code

Figure 53: Potential mechanism
for custom parser actions

www.manaraa.com

88

users of a parser generator to manually convert grammars from whatever conventions were

used in the original grammar into the conventions of the parser generator. This is a minor

inconvenience compared to the task of manually transforming a grammar to fall within a par-

ticular parsing class such as LALR(1), but nevertheless an unnecessary one. By accepting an

XML representation of a BNF grammar, devoid of action code and parser directives,

Yakyacc is insulated from the variability of grammar representations, and allows an arbitrary

number of such representations to be supported, by developing a translation utility for each

grammar syntax.

Figure 54 shows the two such utilities developed so far. The first, bnf2xml, supports the

original (and minimal) BNF syntax of Naur [75], and the second, ebnf2xml, adds syntax for

alternation of RHSs (|), and for multiplicity of clauses (?, *, and +). Parentheses may be

used in combination with any of the multiplicity suffixes.

EBNF syntax is accommodated by replacing the extended-syntax productions with standard

BNF equivalents. A production containing optional clauses is replaced by a series of pro-

ductions, each containing a unique combination of clauses. A repeating clause is handled by

introducing an artificial nonterminal in place of the clause, and defining the new nonterminal

as a left-recursive list of the original clause.

Yakyacc’s input conversion utilities are themselves parsers, as they primarily exist to parse

…
<statements> ::= <statements> <statement> ;
<statements> ::= <statement> ;
<statement> ::= <assignment> ;
<statement> ::= <declaration> ;
…

bnf2xml

<grammar>
 …
 <production lhs=”statements” rhs=”statements statement”/>
 <production lhs=”statements” rhs=”statement”/>
 <production lhs=”statement” rhs=”assignment”/>
 <production lhs=”statement” rhs=”declaration”/>
 …

grammar.bnf

grammar.xml

…
<statements> ::= <statement>* ;
<statement> ::= <assignment>
 | <declaration> ;
…

yakyacc

grammar.ebnf

ebnf2xml

Figure 54: Alternative grammar specifications using BNF and EBNF

www.manaraa.com

89

grammars. Consequently, they can be implemented using

yakyacc, as shown in Figure 55. This is a simple matter of writ-

ing a grammar that describes some dialect of BNF (or EBNF),

using yakyacc to generate a parser, and adding code to transform

parse trees into the XML format expected by yakyacc. Parse

tree transformation is done using the Visitor design pattern to

traverse the tree and construct an equivalent XML document

tree.

4.2.2 Output of parsers

Yakyacc constructs a PDA capable of parsing the input grammar and emits it as an XML

file, as shown in Figure 56. The use of XML here decouples PDA construction from code

generation. Code is subsequently generated by transforming the XML file in a manner

specified by a stylesheet; one example is shown in the figure.

The use of stylesheet-driven code generation means that for any one PDA, a parser may be

generated in any language and implementation style (e.g. table-driven or graph-driven, de-

terministic or nondeterministic) simply by providing a suitable stylesheet. This eliminates

one of the main causes of the current proliferation of parser generation tools: the need for

yakyacc

bnf2xml

xslt

bnf.bnf

compiler

Figure 55: Using yakyacc to
generate bnf2xml

<pda initial_state="state_1">
 …
 <state id="state_15”>
 <shift on=”int” to=”state_16”/>
 <shift on=”bool” to=”state_17”/>
 </state>
 <state id="state_16”>
 <reduce production=”int_type”/>
 …

xslt

pda.xml

yakyacc

package Parser;
import parser.parsetree.*;
import parser.pda.*;
import util.*;

public class YakParser extends SimpleParser {
…

parser.java

<xsl:template match="parser">
 <xsl:text>package</xsl:text>
 <xsl:value-of select="$PackageName"/>
 <xsl:text>;</xsl:text>
 <xsl:text>import parser.parsetree.*;</xsl:text>
 <xsl:text>import parser.pda.*;</xsl:text>
 <xsl:text>import util.*;</xsl:text>
…

DetJavaStyle.xsl

Figure 56: Parser generation using a stylesheet

www.manaraa.com

90

parsers to be implemented in a variety of languages and contexts. Rather than having to de-

velop a whole new parser generator for some new target implementation, we need only a

new stylesheet. This approach also provides users with the ability to tailor the products of

parser generation to their own needs.

4.3 Yakyacc design

For a given grammar, yakyacc first attempts to generate a parser with the weakest approach,

and then tries progressively more powerful approaches until an adequate (i.e. conflict free)

parser is found, or no more improvements can be made. In this way, yakyacc produces a hy-

brid PDA: different states are created and refined by differing parsing algorithms, as re-

quired.

Parser generators can be very complex programs. Combining a range of parsing algorithms

into a single tool is potentially more complex still. Our approach endeavours to keep com-

plexity in check by factoring out the common features of the different parsing algorithms

into an inheritance hierarchy.

Much of the parsing literature was developed when procedural programming was the domi-

nant paradigm, so object-oriented descriptions of parsing algorithms are relatively rare.

(Holmes [43] describes an object-oriented implementation of a Pascal compiler, but the ac-

tual parsing is performed by automaton generated by yacc.) Moreover, the parsing literature

generally favours formal abstraction over software engineering imperatives such as meaning-

ful variable names and maintainable designs. The design of yakyacc addresses these con-

cerns by providing a new OO implementation that is intended to better meet the needs of cur-

rent software engineers.

4.3.1 Runtime PDA

The purpose of yakyacc is to construct an executable PDA; we call this the runtime PDA, to

distinguish it from the dynamic model of a PDA produced by Yakyacc as it progresses

through PDA configurations. (The final version of the yakyacc PDA is generated to become

the static structure of the runtime PDA.)

www.manaraa.com

91

A runtime PDA may be implemented in a variety of ways, as specified by a stylesheet. One

approach is to embed into the stylesheet the complete code needed to make a PDA. This ap-

proach is supported by our architecture and has been implemented, but it has the disadvan-

tage of generating redundant code; each parser contains the ‘boilerplate’ code of the runtime

parser. This minor inelegance becomes a real problem if more than one yakyacc-generated

parser is needed in a single program. An alternative is to capture the common code in a li-

brary that is reused by generated parsers.

In this section, we describe such a library, written in Java. Our reason for describing the run-

time PDA at this point is that the yakyacc PDA – which is our primary concern in this chap-

ter – depends on it, as explained in the next section.

Figure 57 depicts the hierarchy of packages in the runtime library. The main responsibilities

of these packages are:

• parser: Contains all runtime parser code.

• grammar: Represent a context-free grammar.

• parseTree: Represent syntax trees produced by parsing.

• tokenFactory: Construct individual tokens. Elsewhere these will be used as input
for parsing and become leaves in
a parse tree.

• treeFactory: Construct parse
trees.

• visitor: Define visitors for ac-
cessing parse trees.

• pda: Implement a variety of
Push Down Automata (graph-
driven and table driven, determi-
nistic and nondeterministic).

• tokenStream: Provide a stream
of tokens as input for parsing.

• stateMachine: Implement the
state machine of a PDA.

parser

grammar

parsetree

tokenFactory

treeFactory

visitor

pda

tokenStream

stateMachine

builder

Figure 57: Runtime package structure

www.manaraa.com

92

• builder: Construct a state machine.

4.3.1.1 Modelling grammars

Strictly speaking, gram-

mars do not need to be

modelled within the run-

time component of a

parser; the grammar

served its purpose by

being transformed into a

PDA, which captures all

the information essential

to parsing. However,

we chose to model

grammars in the runtime

as they provide a valu-

able reference structure

that defines terms used

elsewhere in the run-

time. In particular, ac-

tions performed by a

PDA may shift a Termi-

nal defined by the

grammar, or reduce a

Production defined by

the grammar. Likewise,

each Token in the input

stream will correspond

to a Terminal and a

branch node will corre-

spond to a Production.

Figure 58: Grammar classes

www.manaraa.com

93

As can be seen in Figure 58, a Grammar contains a list of Terminals and a list of NonTermi-

nals. The first Nonterminal is defined to be the start symbol.

Terminal and Nonterminal inherit from Symbol, which defines a name attribute. A Gram-

mar is responsible for constructing all of its Symbols and ensuring that they are uniquely

named; it maintains a Map of symbols indexed by name for this purpose. Symbols are also

given a unique integer identifier (id) when they are constructed. These numeric identifiers

are provided as a convenience for table-driven parser generators, which may use them to in-

dex tables; they play no role in PDA construction.

A Nonterminal contains a list of Productions for which that Nonterminal is the lhs.

Each Production refers to list of Symbols that comprise its rhs.

Finally, ShiftOrReduce provides a common interface for the two parser actions that may be

initiated by a state: a Terminal specifies a shift action and a Production specifies a reduce

action.

4.3.1.2 Modelling parse trees

Figure 59 shows the parse tree design. The core structure is a variant of the composite de-

sign pattern [35]; a SyntaxTreeBranchNode is a composite of other SyntaxTreeNodes. The

top-level node types are defined as interfaces in order to allow arbitrary parse tree implemen-

tations. Our default implementation appears in the same figure.

A SyntaxTreeNode spans a contiguous sequence of input Tokens – zero or more in the case

of branch nodes, exactly one in the case of leaf nodes. Any SyntaxTreeNode that contains

at least one Token can provide the line and column position of the first Token in the se-

quence. The concatenated string value of all Tokens in the sequence can be provided by the

getValue() method. These methods are useful for communicating information about parse

trees, such as syntactic metrics, back to a programmer. Calling getValue() on the root node

of a parse tree will return the original source code, minus any whitespace.

The input supplied to a parser is a stream of Tokens, and these Tokens become the leaves in

the resulting parse tree. Every Token has a terminalType, which has a reference to a Ter-

minal in the grammar. We differentiate between a ValueToken, which carries a string

www.manaraa.com

94

value, and a standard Token, which does not. The former is necessary for representing to-

kens such as identifiers. During parsing, we need only know the type of token—that it is an

identifier—and not its name, but the name will become important during semantic analysis.

A ValueToken simply carries the string value so it will be available to all subsequent phases

of static analysis. For other tokens (such as Java’s int, =, for, etc), the value is implied by

the token type and need not be carried as it can be retrieved from the Terminal.

Figure 59: Parse tree classes

www.manaraa.com

95

A branch node in a tree may be either a Parse-

TreeBranch, which corresponds exactly to some

production in a BNF grammar, or an ASTList (Ab-

stract Syntax Tree List), which allows trees pro-

duced by recursive BNF productions to be com-

pressed into lists. Figure 60 provides an example of

a recursive production in a grammar, with two

parse trees that might be produced. The first uses

ParseTreeBranch nodes to reflect the recursion.

The second is the flattened ASTList alternative.

The latter structure is particularly useful when a

grammar was originally defined using EBNF, be-

cause the parse tree can conform to the grammar author’s expectations.

The result of parsing an ambiguous sentence is often described as a parse forest. This term

suggests the construction of multiple complete trees. In fact, ambiguities can always be lo-

calised to sub-trees within a singly-rooted tree. Ambiguity is the result of having two or

more viable productions with the same LHS describing the same sequence of tokens. The

ambiguous sub-trees appear identical to all higher nodes in the tree, and so can be packaged

into a single ambiguous tree node, making a data structure known as a packed parse forest.

In fact, since our parsing algorithm also shares identical sub-trees, the data structure is a

packed shared parse forest and the parse tree is actually graph-structured.

In our parse tree design, we model ambiguous and non-ambiguous nodes using the same

SyntaxTreeBranchNode interface. The internal state of any ParseTreeBranch object indi-

cates which it is. We differentiate between ambiguous and non-ambiguous nodes using the

object’s state rather than its class because in GLR parsing algorithms a node that was origi-

nally unambiguous may later become ambiguous as parsing progresses. If we were instead

to replace the old unambiguous node object with a new ambiguous one of a different class,

we would have to update all references to the old node. Our solution differs from that used

by Rekers [91], which employs a bipartite tree to separate each branch node into two levels:

a (potentially) ambiguous node containing one or more unambiguous nodes. In Reker’s al-

statement statement statement

statements

statements

statements

statements ::= statement
 | statement statements

statement statement statement

statements

Figure 60: Parse trees for recursive
 grammar

www.manaraa.com

96

gorithm, references are kept only to the higher, ambiguous,

node, so alternative sub-nodes can be added later. Our design

achieves the same effect, and since ambiguity is relatively

uncommon in real languages, produces much more compact

trees.

Token construction is handled by the tokenFactory package,

shown in Figure 61. The default implementation chains To-

kens together (each Token knows its successor) so that the

original token sequence is retained. This allows whitespace

and comments to be retained in the token sequence, even

though they are filtered out before parsing and consequently omitted from parse trees. This

feature is useful for calculating lexical metrics such as LOC or comment density. The origi-

nal text of a program can even be recovered by walking the complete Token sequence.

The details of constructing parse trees are hidden by using an abstract factory pattern defined

in the treeFactory package. Figure 62 shows the classes. This factory hides whether the

tree under construction is abstract or concrete, and also whether it allows ambiguities. Am-

biguous parse trees cannot be

produced by a deterministic

parser, and in these cases we

use a factory that does not sup-

port construction of ambiguous

sub-trees. Conversely, nonde-

terministic parsers require the

use of a factory capable of mak-

ing ambiguous sub-trees, or else

will produce only one possible

parse tree.

By default, ASTFactory works

like a normal parse tree factory:

it builds parse tree nodes that

exactly reflect productions in

Figure 61: Token factory
classes

Figure 62: Tree factory classes

www.manaraa.com

97

the BNF grammar. However, it

can be configured to translate

some reductions into abstract

syntax tree nodes that model the

lists and optional clauses found in

EBNF. Configuration methods

of ASTFactory specify which

translations are to be performed:

recursive productions flattened

into lists and null symbols in-

serted to emulate productions

with optional clauses.

Parse trees contain information that may later be used in a variety of ways, such as when

building a semantic model or calculating software metrics. In order to allow access to parse

tree information, while keeping coupling in check, the visitor design pattern is used. Figure

63 shows the design, with two concrete visitors. One visitor emits the parse tree as an XML

file (as used in our pipeline), and the other prints it with indenting. Other visitors may be

added as necessary for purposes such as calculating syntactic metrics.

We now discuss the main runtime

pda package, It is more complex

than those described so far, so we

present it incrementally.

4.3.1.3 Main concepts

Figure 64 shows the primary con-

cept, Parser, that represents an ex-

ecutable PDA that can transform a

given TokenStream into a parse

tree, via the parse() method.

Figure 63: Parse tree visitors

Figure 64: PDA base classes

www.manaraa.com

98

Historically, parsers have been implemented in a procedural style, using two-dimensional

tables as the data structures that describe the PDA graph. In that approach, states are repre-

sented by integer identifiers, which are used as indexes into tables to find state transitions

and reduce actions. Implementations that use this approach are encompassed by the Table-

DrivenParser abstract class. In object-oriented designs, however, states are better repre-

sented as objects, responsible for their own transitions and reduce actions, so no table is nec-

essary. The states and their relationships form a graph data structure; GraphDrivenParser

represents the approach, but it might equally have been called state-driven, as the essential

concept is that states are objects.

In this discussion GraphDrivenParser is the more important of the two approaches because,

as we explain in the next section, yakyacc itself uses a specialised version of GraphDriven-

Parser for constructing PDAs. Table-driven parsers are provided as a runtime library op-

tion. A code generation stylesheet may choose to use a graph-driven or table-driven imple-

mentation from the library (or may independently generate its own variant of either ap-

proach).

Although table-driven parsers are not essential for our purposes, we have implemented them

because they provide a useful basis for comparison and testing of our less conventional

graph-driven versions. Using traditional parser implementations allows us to verify the be-

haviour of experimental parser implementations by running back-to-back tests.

The Parser class captures common aspects of the table-driven and graph-driven implemen-

tations, and in particular the parse() method, shown in Figure 65. This method accepts a

TokenStream and repeatedly invokes the (abstract) step() method to process one token of

input at a time, until the parse is complete.

The Parser class also provides a minimal de-

fault implementation of error handling. The

error() method reports a message with the

offending token, including its line and column.

Subclasses improve on this message by includ-

ing a list of expected tokens. (Although not

evident in the figures, Message and Mes-

public SyntaxTreeBranch run(TokenStream tokenStream) {
 reset();
 boolean ok = true;

 while (ok && !accept()) {
 if (step(tokenStream))
 tokenStream.advance();
 else {
 error(tokenStream.current());
 ok = recover(tokenStream);
 }
 }

 return ok? getResult() : null;
}

Figure 65: The parse() method of Parser

www.manaraa.com

99

sagePrinter classes are used to decouple the Parser from the user interface.) The default

recover() implementation merely returns false. This is adequate for our purposes of pars-

ing syntactically correct code, but for general purpose parsing, subclasses would have to

override the default

behaviour with more

sophisticated variants.

4.3.1.4 Table-driven parsers

Figure 66 shows our two existing table-driven parser implementations. Like other table-

driven parsers they are limited to k = 1 to keep space requirements in check. SimpleParser

is a deterministic table-

driven parser. Reker-

sParser is a nonde-

terministic table-driven

parser that implements

the corrections made

by Rekers [91] to To-

mita’s GLR algorithm.

The code of Sim-

pleParser is much the

same as can be found

in deterministic LR

parsers elsewhere. The

whole class is only

about 100 lines of

code. The step()

method appears in

Figure 67.

Figure 66: Table-driven parsers

www.manaraa.com

100

The stack used by the de-

terministic parser is a singly-

linked list implemented by

SimpleStackNode. Each

node stores a state and a

parse tree, and is otherwise

‘dumb’, with little more than

getter/setter methods.

The nondeterministic Re-

kersParser is more com-

plex because it must support

conflicting actions (but still

has fewer than 400 lines of

code). RekersParser uses a Graph Structured Stack (GSS) implemented by RekersStac-

kNode. These GSS nodes are like SimpleStackNodes except that a node can have multiple

predecessors. However, parse trees must be stored differently. In SimpleStackNode it was

sufficient to store a parse tree directly in each node. A node could have only one predeces-

sor, so it was clear that the tree applied to the transition from the predecessor node to the cur-

rent node. A RekersStackNode, on the other hand, can have many predecessors, each with

a different parse tree. Logically, the parse trees can be viewed as being on the links between

stack nodes, rather than in the stack nodes themselves. We use a Map to store previous

stack nodes and their associated trees.

The GLR parsing algorithm described by Rekers is shown in Figure 68. Our implementation

translates this pseudocode into Java (Rekers uses Lisp) and adapts it to our framework. Re-

kers’ terminology differs from ours: a parser is a node on the stack, and an active parser is

on top. A rule node is a non-ambiguous parse tree branch and a symbol node is an ambigu-

ous one. The REDUCER procedure actually performs a goto action. Within our Reker-

sParser class we use Rekers’ terminology.

protected boolean step(Looker looker) {
 Token token = looker.first();
 Symbol tokenType = token.getSymbolType();
 if (tokenType == null)
 return false;

 Production reduce = stateTable.getReduction(stack.getState(), tokenType);

 while (reduce != null) {
 List kids = new LinkedList(); // SyntaxTreeNodes

 for (int i = reduce.getSize(); i > 0; i--) {
 kids.add(0, stack.getTree());

stack = stack.pop();
 }

 SyntaxTree branch = treeBuilder.makeBranch(reduce, kids);
 Symbol gotoSymbol = reduce.getLhs();
 int gotoState = stateTable.getTransition(stack.getState(), gotoSymbol);
 stack = stack.push(gotoState, branch);
 reduce = stateTable.getReduction(stack.getState(), tokenType);
 }

 int shiftState = stateTable.getTransition(stack.getState(), tokenType);
 if (shiftState > 0) {
 stack = stack.push(shiftState, token);
 return true;
 }

 return false;
}

Figure 67: The step() method of SimpleParser

www.manaraa.com

101

Rekers’ PARSE procedure

corresponds to our parse()

method inherited from

Parser, and is therefore

omitted from Reker-

sParser. PARSEWORD

corresponds to step(), and

this is where Rekers’ algo-

rithm is fitted into our

framework. If step() is

considered the ‘top’ inter-

face, then the ‘bottom’ re-

turns control to our frame-

work by replacing Rekers’

parse tree construction code

with calls to our Parse-

TreeFactory. If we supply

our usual factory implemen-

tation, we induce Rekers

algorithm to construct our

usual parse tree structure,

without needing to signifi-

cantly change Rekers’ ap-

proach.

It is not necessary for the

reader to understand Rekers’

algorithm in great detail, but

we note two features that

will provide a useful basis

for comparison in the fol-

lowing discussion. Most of the algorithm is a relatively straightforward adaptation of the

deterministic (simple stack) approach, but there are a couple of tricky issues that arise be-

PARSE(Grammar, a1 ... an) :
 an+1 := EOF
 global accepting­parser := 0;
 create a stack node p with state START­STATE(Grammar)
 global active­parsers := { p }
 for i := 1 to n + 1 do
 global current­token := ai
 PARSEWORD
 if accepting­parser != 0 then
 return the tree node of the only link of accepting­parser
 else
 return 0

PARSEWORD :
 global for­actor := active­parsers
 global for­shifter := 0
 while for­actor != 0 do
 remove a parser p from for­actor
 ACTOR(p)
 SHIFTER

ACTOR(p) :
 forall action E ACTION(state(p), current­token) do
 if action = (shift state’) then

add <p, state’> to for­shifter
 else if action = (reduce A::= α) then
 DO­REDUCTIONS(p, A::= α)
 else if action = accept then
 accepting­parser := p

DO­REDUCTIONS(p, A::= α) :
 forall p’ for which a path of length(α) from p to p’ exists do
 kids := the tree nodes of the links which form the path from p to p’
 REDUCER(p’, GOTO(state(p’), A), A::= α, kids)

REDUCER(p-, state, A::= α, kids) :
 rulenode := GET­RULENODE(A::= α, kids)
 if ∃p E active­parsers with state(p) = state then
 if there already exists a direct link link from p to p- then
 ADD­RULENODE(treenode(link), rulenode)
 else
 n := GET­SYMBOLNODE(A, rulenode)
 add a link link from p to p- with tree node n

forall p’ in (active­parsers - for­actor) do
 forall (reduce rule) E ACTION(state(p’), current­token) do
 DO­LIMITED­REDUCTIONS(p’, rule, link)
 else
 create a stack node p with state state
 n := GET­SYMBOLNODE(A, rulenode)
 add a link from p to p’ with tree node n
 add p to active­parsers
 add p to for­actor

DO­LIMITED­REDUCTIONS(p, A::= α, link) :
 forall p’ for which a path of length(α) from p to p’ through link exists do
 kids := the tree nodes of the links which form the path from p to p’
 REDUCER(p’, GOTO(state(p’), A), A::= α, kids)

SHIFTER :
 active­parsers := 0
 create a term node n with token current­token
 forall <p-, state’> E for­shifter do

 if ∃p E active­parsers with state(p) = state’ then
 add a link from p to p‘ with tree node n
 else
 create a stack node p with state state’
 add a link from p to p- with tree node n
 add p to active­parsers

GET­RULENODE(r, kids) :
 return a rule node with rule r and elements kids

ADD­RULENODE(symbolnode, rulenode) :
 add rulenode to the possibilities of symbolnode

GET-SYMBOLNODE(s, rulenode) :
 return a symbol node with symbol s and possibilities { rulenode }

Figure 68: Rekers’ algorithm

www.manaraa.com

102

cause of nondeterminism, and were missed by Tomita and later corrected by Nozohoor-

Farshi [80].

The first of these is that a grammar containing a cycle of ε-reductions will cause a parser to

loop infinitely—unless it can detect the loop. For programming language parsing this is an

esoteric concern, as any such grammar will define infinitely many parse trees for a single

sentence and we dismiss it as not well-formed for programming language definition. Never-

theless, Rekers’ algorithm correctly handles such grammars by constructing cyclic parse

trees. These are necessarily ambiguous, and as soon as the ambiguity is detected the loop is

broken. We revisit this issue with our own approach, because even though cyclic ε-

reductions will not occur when parsing source code, the ability to handle cyclic parse trees in

finite time proves very valuable for our parser construction approach.

The second issue is of consequence here because we later propose an alternative solution to

the one found by Nozohoor-Farshi and implemented by Rekers. GLR parsers prevent a

combinatorial explosion by merging stacks that converge on the same state. Rekers’ (and

other) existing GLR parsers merge goto states (states reached on a goto) in the same way

they merge shift states. Shift states, however, imply the end of the line for an input step and

are not processed further during that step, whereas goto states must perform the actions they

contain, until shift states are eventually reached. When parsing an ambiguous sentence a

PDA may repeatedly goto a particular state while performing a step(). This presents a

problem if there is a single (merged) top node for this goto state. If the goto state’s actions

have already been performed, then any reductions it contains will have been done for incom-

ing links that existed at the time the reductions were performed. The same actions must be

repeated, but only for newly added links. Rekers defines the DO-LIMITED-REDUCTIONS pro-

cedure for this purpose. It performs a search up to a fixed depth (the size of a reduction)

through all paths at the top of the GSS to determine which ones traverse the new link. As we

later explain, our alternative avoids this search by merging top nodes for goto states in a

more restricted way.

www.manaraa.com

103

4.3.1.5 Graph-driven parsers

This ends our discussion of table-

driven parser implementations and

we attend now to the graph-driven

alternative, shown in Figure 69.

The two graph-driven parser vari-

ants are DeterminsiticParser

and NondeterministicParser.

These classes are lighter weight

than their table-driven equivalents

(especially in the nondeterministic

variety) because they use objects

to represent states (rather than

ints) and so can delegate more

functionality. Their step() methods appear in Figure 70 and Figure 71.

As can be seen in the methods, the deterministic parser has a single top node, while the non-

deterministic parser has a collection of tops. The act() method of each top node is in-

voked. The node responds (after consulting the State it holds) by calling the parser back

with a shift() or goto() request, or in the nondeterministic case, possibly more than one

request. Reduce actions are handled by the stack nodes themselves, by popping their linear

or graph-structured predecessors until a goto occurs.

Figure 72 shows how a DeterministicParser performs shift() and goTo() actions. For

both actions, top is adjusted to reference a newly-pushed stack node. In the case of a goto

action, a parse

tree node is also

constructed, and

the new top

node is asked to

act(), perpetu-

ating the process

until a shift()

Figure 69: Graph-driven parsers

Figure 70: The step() method of
DeterministicParser

Figure 71: The step() method of
NondeterministicParser

www.manaraa.com

104

eventually occurs.

Figure 73 contains the nondeterministic ver-

sions of shift() and goto(). These meth-

ods implement the merging behaviour of the

graph-structured stack. The algorithm used

here is new and improves on Nozohoor-

Farshi’s method implemented by Rekers, as

we explain.

NondeterministicParser stores (in the shifts Map) all nodes pushed onto the top of the

stack by a shift() action during the current step. When a shift() occurs, the parser first

checks whether a shift to that state has already happened, and if so the same top node is re-

used, merging two branches of the stack. Goto nodes, however, are never merged and this is

where the algorithm’s behaviour is new. Rekers’ approach does merge goto nodes, and so

creates a situation in which some links entering a goto node have been reduced and some

have not. Rekers’ DO-LIMITED-REDUCTIONS procedure is then necessary to perform a brute-

force search through all possible reductions to find those that pop through the new link. Our

approach avoids this search by simply not merging goto nodes; reductions then go only

where they should, and when a shift subsequently occurs merging takes place as normal.

Our approach re-uses goto nodes only when

they are reached again from the same prede-

cessor node (that is, following the same link)

during the same step. This occurs only when

an ambiguity has been found, and the am-

biguous alternative trees can be merged. In

this situation the goto node is not asked to

act() because it has already done so.

Tomita’s original GLR algorithm looped infi-

nitely on some grammars containing

ε−productions. This occurred when a state

could reduce an empty production and the re-

Figure 72: The shift() and goTo() methods
of DeterministicParser

Figure 73: The shift() and goTo() methods
of NondeterministicParser

www.manaraa.com

105

sulting goto cycled back to the same state, either directly or via a series of similar empty re-

ductions. The change we have made re-introduces that problem, but it is easily overcome by

a small modification. The checkCycle() method visible in Figure 73 checks to see if a se-

quence of nodes at the top of the stack contains a cycle of empty parse trees. If so, the low-

est-positioned node involved in the cycle is re-used, creating a loop in the graph-structured

stack in much the same way that Nozohoor-Farshi’s algorithm does. The checkCycle()

method is more efficient, however, because it need only follow a linear-structured segment at

the top of the stack

until a non-empty

parse tree or a shift

node is encoun-

tered.

4.3.1.6 Stack nodes

We now describe

the remaining

classes in the pda

package. These are

the graph-driven

parser stack nodes

shown in Figure 74.

These classes have

richer functionality

than their table-

driven equivalents,

because they are

responsible for in-

teracting with

State objects

(which are defined

in the state-

Machine package,

Figure 74: Graph-driven parser stacks

www.manaraa.com

106

described below). They are, nevertheless, simple classes. Each StateStackNode references

a State. The act() method of StateStackNode simply forwards the act() request to the

State, which calls back the node using the shift() and/or reduce() methods defined in

the PdaActor interface. The PdaActor interface is all that is presented to State objects, so

that node implementations remain hidden from States. The state is ultimately responsible

for deciding which action(s) it should take.

This completes the description of the contents of the pda package, other than classes con-

tained in sub-packages. We now briefly describe the sub-packages: tokenStream, state-

Machine and builder.

4.3.1.7 Parser input streams

The tokenStream package, shown in Figure 75, provides classes that handle input to the

parser. These are largely self-explanatory, with the possible exception of the Looker inter-

face, which abstracts the protocol

for looking ahead into a token

stream.

4.3.1.8 State machine design

States are defined in the state-

Machine package, as in Figure 76.

(For clarity, we have omitted ta-

ble-driven state machine classes

from the diagram.) State itself is

an abstract base class, while Run-

State provides a default state im-

plementation for the runtime li-

brary.

Every State except the start state

records the symbol of its immedi-

ate incoming transitions. (Al-

though state transition diagrams

Figure 75: Classes for Token input

www.manaraa.com

107

are normally drawn

with a symbol label-

ling each transition,

all transitions into a

state must have the

same symbol; this de-

sign avoids redun-

dantly storing sym-

bols on links.)

States store transi-

tions as a Map of des-

tination States in-

dexed by symbol. Re-

ductions (Produc-

tions) are stored in a

Set. States delegate

the task of choosing

parsing actions to

Lookaheads.

A Lookahead exam-

ines a sequence of in-

put Tokens and initi-

ates one or more

parser actions by call-

ing back the given

PdaActor, as described above. KLookahead and its subclasses support heterogeneous values

of k by storing lookahead sequences as trees of various depths.

4.3.1.9 State machine builder

The final piece of the runtime PDA library is a builder design pattern [35], which aids the

construction of state machines. It is shown in Figure 77. StateMachineBuilder provides

Figure 76: State machine classes

www.manaraa.com

108

an API for assembling auto-

mata, and delegates looka-

head construction to a Looka-

headBuilder.

GenStateMachineBuilder is

a specialist interface designed

to simplify code generation.

It accepts arrays of Strings

as inputs, since these can eas-

ily be generated.

4.3.2 PDA construction

The previous section de-

scribes the runtime PDA li-

brary, which implements de-

terministic and nondetermin-

istic parsers within a common

framework. We now explain

how the runtime classes are

extended in order to imple-

ment a parser generator.

4.3.2.1 Main concepts

The central innovation in our approach is the use of an enhanced GLR automaton to explore

its own state space, in order to calculate lookaheads and to split states. The automaton is

consequently self-modifying. When the modification process is complete, the automaton is

ready to be output as a runtime PDA.

The parser generator is implemented by specialising the runtime framework. The runtime

NondeterministicParser is subclassed to produce a parser capable of parsing sub-

sentences of length k, and then extended further to ‘parse’ all possible k sub-sentences for

use as lookaheads. As it does so, it can split states to remove lookahead conflicts.

Figure 77: State machine builder

www.manaraa.com

109

This design re-uses runtime classes for the parser generator, and

consequently significantly reduces the size and complexity of the

parser generator. To our knowledge, the use of a GLR-based

automaton to implement a parser generator is an original contribu-

tion.

The parser generator package structure appears in Figure 78. It

parallels the runtime package structure, but omits some utility

packages.

4.3.2.2 Grammars

The runtime library contains classes for representing grammars, as

we have seen. It does not, however, need to perform checks on

grammars to ensure they are well formed (that is, that all nonter-

minals are referenced and resolvable, etc) because grammars for

runnable parsers must already have been checked. The

yakyacc.grammar package, shown in Figure 79, provides the YakGrammar class to imple-

ment grammar validity

checks in the parser genera-

tor and to augment the

grammar with a top-level

production. The package

also contains a class that can

load a grammar from an

XML file; this file is the

sole input to the parser gen-

erator.

Finally, the grammar pack-

age contains an artificial

Production subclass, Bo-

gusProduction, that is

Figure 78: Parser
generator
package
structure

Figure 79: Yakyacc grammar classes

www.manaraa.com

110

used during parser generation, as we explain below.

4.3.2.3 Sub-sentence parsers

The yakyacc.pda package contains the most important classes of the parser generator. We

now discuss two classes of that package that provide a basis for the subsequent design dis-

cussion.

Figure 80 shows classes

that extend the runtime

nondeterministic parser

to allow parsing of sub-

sentences of length k.

As can be seen from the

diagram, the extended

functionality is achieved

relatively simply.

KParser inherits the contract of NondeterministicParser and behaves like a normal GLR

parser when used normally. However, it extends normal parser functionality by allowing

parsing to begin at some point other than the start of the sentence. This requires the parser to

begin parsing in any state (or states) where the sub-sentence begins. By default, a Nonde-

terministicParser primes its stack with the single start state defined by its State-

Machine. A KParser, in contrast, accepts a set of start states when it is constructed and

primes its stack with them. If a KParser is invoked via the parseKTokens() method (rather

than the usual parse() method), it stops after k steps (by overriding the accept() method).

Because sub-sentence parsing does not necessarily begin with a state machine’s real start

state, the automaton may pop below known states on the stack. In a normal parser this would

be a fatal error. KParser accommodates this need by priming the stack with PopNodes.

When a PopNode is constructed, it generates an artificial stack history for itself, consisting of

other PopNodes. This history contains all possible routes by which the original PopNode

might have been reached. The relevant code appears in Figure 81.

Figure 80: KParser

www.manaraa.com

111

Only one PopNode is constructed for each

state reachable by popping below the origi-

nal state. Whenever a particular state can

be reached by popping through different

paths, the links in the stack converge on the

single PopNode for that state. Conse-

quently, the bottom section of the graph-

structured stack contains cycles of Pop-

Nodes. The upper section of the stack con-

tains pushed GSSNodes as usual. When the

parser runs, it (nondeterministically) fol-

lows all possible paths, and therefore produces all possible parse trees for the sub-sentence.

This technique causes no performance difficulty be-

cause the number of PopStates is finite, and a par-

ticular goto action will be performed only once for

each state; the inherited goto() behaviour of the

parser catches identical goto actions and records am-

biguous parse tree nodes. These ambiguous tree

nodes may be cyclic.

4.3.2.4 Transmogrifiers

We now describe the final extensions to the Parser

hierarchy. Figure 82 depicts the Transmogrifier

classes; the name evokes their ability to change the

structure of a PDA as they explore it.

Transmogrifier conforms to the contract of

KParser, and consequently will work as expected for

normal nondeterministic parsing and for sub-sentence

parsing. If invoked via the mogrifyParse() method,

however, it behaves as a parser generator by modify-

ing the automaton as it runs. In this case it does not

Figure 81: PopNode construction

Figure 82: Transmogrifier classes

www.manaraa.com

112

parse a real input stream of tokens, but instead produces all possible parses up to a given

maximum value of k. In this way it discovers the lookahead sequences for all states from

which it starts. Initial states are provided to the constructor, as for KParser.

 Figure 83 shows how the major methods of Trans-

mogrifier are implemented. A sub-sentence parse is

initiated with a BogusTokenStream, which provides all

possible tokens to states request input in order to

choose parse actions. This is how all possible token

sequences are generated.

The step() method of Transmogrifier works nor-

mally (conforms to the inherited contract), unless the

mogrify flag indicates that a special mogrifyParse()

is in progress. In that case, it uses token sequences discovered during the step to construct

lookaheads for all states from which the parse began. It then calls split(), which does

nothing by default but is overridden in a subclass. Finally, it calls prune(), which removes

from the stack any nodes that are involved in producing only adequate lookaheads. Conse-

quently, the only lookaheads that will be explored further (on the next step) are inadequate

ones. The process stops when all lookaheads are adequate or the k limit is reached.

Transmogrifier has three simple subclasses,

SLRTransmogrifier, LALRTransmogrifier

and LRTransmogrifier. Although little code is

required, these three classes modify the parser

generator’s behaviour so that it produces

SLR(k), LALR(k) or LR(k) automata respec-

tively. This is achieved by constructing a dif-

ferent subclass of PopNode in each case (shown

in Figure 84), and also overriding split() in

the LR(k) case.

To make a Transmogrifier that calculates

SLR lookahead, PopNodes are set up in a differ-

 Figure 83: Major Transmogrifier
 methods

(a) SLR PopNode

(b) LALR PopNode

(c) LR PopNode

Figure 84: Priming Transmogrifiers
with different PopNodes

www.manaraa.com

113

ent fashion from the cyclic graph structure used by KParser.

The KParser cyclic graph follows actual transitions in the state

machine, and consequently produces only those token se-

quences that are actually possible. SLR lookahead, on the

other hand, includes some extra lookaheads. The SLR looka-

head calculation does not accurately trace pops and gotos, but

instead ‘jumps’ on a goto to all states that contain the same

symbol as the current goto action. We induce this behaviour in

SLRTransmogrifier by placing at the base of the stack a spe-

cial SLRPopNode, which acts as though it contains a state with

transitions to every goto state. This is, to our knowledge, a

new way of calculating SLR lookahead. Its advantage in our

context is that it integrates SLR parser generation with its alternatives, and very little code is

required. For comparison, conventional SLR lookahead calculation is described in [23].

LALR and LR Transmogrifiers use cyclic PopNode structures like that of KParser. Dif-

ferent PopNode subclasses are constructed for each case, however, because LRPopNodes also

support splitting of states.

We are now ready to describe how a PDA is constructed, and will return to the details of

splitting states and pruning stack nodes below. PDAMaker, shown in Figure 85, controls the

process. It works much like the extended example presented in Chapter 3, by progressively

escalating parsing power for inadequate states.

PDA building begins by constructing a DynamicStateMachine (discussed later) from the

grammar. The state machine constructor creates LL automata, adds ε−transitions to make an

LR automaton, and merges ambiguous transitions.

PDABuilder then makes the machine LR(0), simply by con-

structing 0-length lookaheads. Different types of Trans-

mogrifier are then invoked in order of power (SLR,

LALR, LR) to escalate the power of the PDA, as shown in

Figure 86. Each Transmogrifier is provided with the re-

maining set of inadequate states as its start states. Looka-

head depth is limited to 1 for all but the last Transmogri-

Figure 85: PDAMaker

Figure 86: Escalating parser
construction

www.manaraa.com

114

fier invocation; command line arguments specify which parser class should be last and the

maximum value of k. If any inadequate states remain at the end of this process, a GLR

parser will be required.

We now discuss LR state splitting. LRTrans-

mogrifier differs from the other Transmog-

rifiers by splitting states, if possible, to im-

prove their lookahead. The LRTransmogri-

fier split() method appears in Figure 87.

It attempts to split every LRPopNode; these

contain the states that lead by some series of

transitions to inadequate state(s). (This must

be so, as PopNodes are obtained only by pop-

ping back from inadequate states.) If any

PopNode is successfully split, the split()

method re-visits PopNodes immediately above

the split on the stack to check whether the

next PopNodes can now be (further) split as a result of the change.

Some of the lookahead of a state comes from transitions that (only) walk forward from that

state. This lookahead will reside in parse trees attached to TransmogrifierPushNodes on

top of a starting PopNode. Splitting a state can never eliminate lookahead derived in this

way, because any new state must be able to accept the same token sequences as the old one.

We describe this inalienable lookahead as anchored.

Some lookahead, however, comes from popping back from a state (at some point during the

parse) and then pushing forward again. If we pop over a state that has multiple incoming

links, then all of them will be followed and the lookaheads subsequently generated by the

different paths might differ. We can view these lookaheads as flowing into a state (and its

successors) along incoming transitions. When transitions converge on a state, the burden of

lookahead carried by each transition is combined and may cause conflicts in that state or

subsequent ones. If we split the state where the convergence occurs, we can keep the in-

flowing lookaheads separate and may thus reduce the number of conflicting lookaheads.

Figure 87: The split() method of
LRTransmogrifier

www.manaraa.com

115

The same situation is echoed by PopNodes, because they ‘wrap’ states. If two or more in-

coming links converge on a PopNode, then that PopNode may be split into separate PopNodes

reached by different incoming links. The state within the original PopNode must also have

convergent incoming transitions and be split like the PopNode.

Our LRPopNode splitting algorithm relies on knowing what lookaheads are carried by links

between LRPopNodes. It also knows all anchored lookaheads. An LRPopNode can use this

information to calculate and compare the sets of lookaheads that would arise if the LRPop-

Node (and its state) were split. Details of how an LRPopNode splits are provided in the next

section.

Before we move on to the design of

Transmogrifier stack nodes, we

briefly discuss the final task of a

Transmogrifier step(): pruning

stack links that are no longer neces-

sary because they produce only

adequate lookaheads. The code ap-

pears in Figure 88. It delegates to

the top stack nodes the task of re-

moving unwanted links. (We look

again at this when we discuss stack

nodes.) If all paths to a top node

prove to be adequate the top node is

removed. The remainder of the prune() method removes all artificial parse tree branches

created when making lookaheads.

4.3.2.5 Stack nodes

Figure 89 shows the graph structured stack nodes used by Transmogrifiers. We have al-

ready explained the purpose of the PopNodes. The remaining classes exist to support looka-

head calculation, state splitting and pruning, as these tasks are delegated by the Transmogri-

fier to TransmogrifierGSSNodes.

Figure 88: The prune() method of Transmogrifier

www.manaraa.com

116

Parse trees contain the se-

quence of tokens encoun-

tered during a parse; the to-

kens are the leaves of the

tree. This means that at the

end of the kth step() of a

mogrifyParse(), parse trees

contain all k-lookahead se-

quences. Lookahead calcula-

tion consists of extracting

this information.

 The first step of lookahead

calculation joins adjacent

parse trees together to ensure

a full sequence of k tokens.

Adjacent here means the

trees are associated with se-

quential links in the graph

structured stack. The join-

Trees() method of Trans-
mogrifierPushNode
achieves this task by per-

forming an artificial reduc-

tion using the BogusProduc-

tion introduced earlier.

This process creates artificial

branches above existing

parse trees that concatenate adjacent trees, until a PopNode is reached, at which point the

joined tree must contain sequences of k tokens. This is necessarily so, because popping the

stack below the origin state can never add tokens (and we never push a PopNode). The

joinTrees() method uses a cache of intermediate results to avoid repeating work when

graph-structured stack nodes are revisited via different paths.

Figure 89: TransmogrifierGSSNode hierarchy

www.manaraa.com

117

Splitting of states is initiated by the split() method of LRTransmogrifier, as we have

seen. The actual splitting of nodes takes place in LRPopNode. The code is shown in Figure

90 and Figure 91. No split is possible unless there is more than one incoming link, so this

condition is checked first. The split() method then invokes partition(), which deter-

mines the set of lookaheads carried by the parse tree of each incoming link. (These sets in-

clude anchored lookaheads, so contain the full lookahead sets in which each link partici-

pates.) The sets are compared to determine which ones can be combined without introducing

conflicts; so that we do not do any splitting that fails to improve the lookahead of some state.

If more than one partition is found, the split() method calls a special constructor of

LRPopNode (Figure 92) to copy the current stack node and adjust the stack links. The con-

structor also invokes two different parse tree methods so that they will update their looka-

heads in order to reflect the now-split states. The first of these calls, replaceWith(), in-

forms a parse tree node that the stack link on which it resides has just been changed to point

to a new LRPopNode, and that therefore lookaheads associated with that parse tree might now

apply to a newly created state. The second call, splice(), informs a parse tree node that an

entirely new stack link has been created by cloning an existing one. The splice() method

clones a fragment of the parse tree associated with the original link and associates the new

Figure 90: The split() method of LRPopNode

Figure 91: The partition() method of
 LRPopNode

www.manaraa.com

118

fragment with the new link. The two

fragments may merge (as ambiguous

sub-trees) at some higher parse tree

branches made by popping back to

earlier LRPopNodes.

4.3.2.6 Lookahead parse trees

Transmogrifiers use specialised

parse trees that translate tree nodes

into lookahead sequences. As usual, a

ParseTreeFactory hides the imple-

mentation from higher-level classes.

The lookParseTree package, shown

in Figure 93, contains the relevant

classes. These trees consist of Look-

Tokens and LookParseTreeBranches,

which represent parse tree leaves and branches, respectively. A new type of parse tree node,

LookPoppedTree, is also introduced. These are leaf nodes that represent missing sub-trees

that are uncovered by popping below the origin of the stack. They are all created before a

parse begins: when the PopNodes for any Transmogrifier are initialised at the start of a

parse, the links between them are associated with a LookPoppedTree. We do this so that

every link in a Transmogrifier stack has a related parse tree node and can determine what

lookahead it generates. LookPoppedTrees always generate a lookahead of length zero.

They are nevertheless useful, because they locate a fragment of lookahead in the parse tree

and consequently assist with determining to which state lookaheads higher up in the tree ap-

ply. They also perform an important role in moving lookaheads between states when states

are split, via the replaceWith() and splice() methods described above.

Figure 92: Splitting constructor of LRPopNode

www.manaraa.com

119

LookParseTree nodes delegate lookahead assembly to the TreeLookSet class so that com-

mon functionality appears in one place. Every parse tree node stores one TreeLookSet ob-

ject, which holds a collection of the lookaheads generated by that tree node. It also ensures

that each fragment of lookahead has a parent relationship to longer lookaheads to which it

contributes. (This relationship is used by the getPartition() method of LookPoppedTree

to find all lookaheads in which the LookPoppedTree participates.)

Figure 93: Parse trees that calculate lookahead

www.manaraa.com

120

Lookahead construction occurs as parse trees are built; each tree node always knows its cur-

rent lookahead sequences. When an ambiguity is found, new lookaheads may be introduced

to an existing parse tree node. That node may already have been reduced to make higher-

level tree nodes, and so the new lookaheads need to be propagated up the tree. Care must be

taken to make this process work correctly. A naïve implementation would loop infinitely, as

parse trees can be cyclic. Even if cycles are detected, a brute-force approach that walks all

combinations of parent relationships in the tree will not terminate quickly for complex gram-

mars because of a combinatorial explosion. Itemising all of the routes through a cyclic parse

tree can require the same level of complexity as itemising all paths through the state ma-

chine: an impossible task for some real grammars (including the Java exposition grammar).

Our design detects cycles and avoids unnecessary re-work by stopping lookahead propaga-

tion as soon as a tree node’s lookahead is found to be unchanged after a new lookahead cal-

culation.

We can detect anchored lookaheads in parse trees; they are the ones in which no Look-

PoppedTree participates. All anchored lookaheads are stored in a static Set in the Looka-

headSet class of the dynamicStateMachine package, so that they can participate in every

LookaheadSet.

4.3.2.7 Dynamic state machines

The remaining package of the parser generator is dynamicStateMachine (Figure 94), which

defines a specialisation of the runtime state machine in order to support the evolution of loo-

kahead and states brought about by Transmogrifiers.

YakState extends its superclass implementation by keeping track of incoming transitions as

well as outgoing ones, in order to enable the creation of PopNodes that back up through the

machine. It has a number of methods that assist with initial construction of the state graph,

including methods to remove ε−transitions and to merge states that are reached on the same

transition. It also provides constructors that split existing states and re-route incoming transi-

tions.

www.manaraa.com

121

Figure 94: Dynamic state machine classes

www.manaraa.com

122

DottedItem models the ‘dotted items’ of conventional parser generation algorithms. It takes

no part in PDA construction in our algorithm, but serves as a useful mechanism for compar-

ing our results with other approaches.

The lookahead implementation provided in the dynamicStateMachine package differs from

the runtime lookahead in order to allow lookahead growth and separation. The essence of

the design can be discerned from the class diagram and the code is largely straightforward.

4.4 Discussion

We have presented a new practical approach for generating a range of hybrid LR parsers in-

cluding SLR(k), LALR(k), and LR(k), by escalating the power of the parsing algorithm and

depth of lookahead only for states that need it. The approach makes use of an extended vari-

ant of GLR parsing to explore its own state machine and calculate lookaheads, and to split

states when doing so improves lookaheads. To our knowledge this approach has not been

tried before.

We have also described the design of an original framework that integrates different execu-

table LR parser automata implementations, as well as our new LR parser generator approach.

We know of no other parser generator that produces such a broad range of practical parsers.

The design is very simple (compared to other parser generators), especially considering the

variety of parsing algorithms included.

The following sections describe our contribution in the light of earlier work.

4.4.1 GLR parsing

We advocate the use of GLR parsing of programming languages when other LR parsing

classes prove insufficient. This is an important contribution of this work, because it is essen-

tial to our strategy of using powerful parsing to allow standard (or definitive) grammars to be

used without modification. The advantages of doing so are ease of development and im-

proved rigour of downstream analysis.

www.manaraa.com

123

Other authors have noted the advantages of GLR parsing of programming languages, for ex-

ample van den Brand et al. [105] and McPeak and Necula [72]. Johnstone et. al [58] say:

In the last decade the computing community has shown an increasing interest

in parsing techniques that go beyond the standard approaches. There are a

plethora of parser generators that extend both top-down and botton-up ap-

proaches with backtracking and lookahead constructs. As we have noted

elsewhere such parsers can display surprising pathologies: in particular parser

generators such as PRECC, PCCTS, ANTLR and JAVACC are really match-

ing strings against ordered grammars in which the rule ordering is significant,

and it can be hard to specify exactly what language is matched by such a

parser. In any case, backtracking yields exponential parse times in [the]

worst case.

A safer approach is to use one of the truly general context free parsing algo-

rithms such as Earley, CYK or a variant of Tomita’s GLR algorithms.

We have produced two GLR parser implementations: a Java implementation of Rekers algo-

rithm, and our own object-oriented design. Most parsing literature uses pseudocode and

most parsing tools use procedural designs, so our design provides a contrast and a useful ar-

chetype for parser developers who wish to employ object-oriented technology.

GLR parsers are not widely used, but some other implementations are available. ASF+SDF

(descended from Rekers work) [104] and Elkhound [72] are examples. Bison [27] is a very

widely used LALR(1) parser that now claims to support GLR parsing. As we have noted,

however, some commentators [56] suggest the current implementation is seriously flawed.

As we discussed earlier, Nozohoor-Farshi corrected Tomita’s GLR algorithm to accommo-

date ε-reductions and cyclic reductions, and Rekers provided an implementation. Like

theirs, our variety of GLR parser works for empty reductions and cycles, but we substitute a

www.manaraa.com

124

bounded linear search (explained in Section 4.3.1.5) in place of a laborious search through

the top of the graph-structured stack. We have not seen this enhancement elsewhere.

Although we reject cyclic grammars supplied to yakyacc as errors (because we assume that

no designer of a programming language would want infinitely ambiguous sentences), we

make use of our GLR parser’s ability to handle cycles to implement our parser generators.

Rekers also makes some improvements to the amount of sharing of sub-trees in the parse

forest. We have made no attempt to do the same.

Johnston et. al [57] have taken a different approach to avoiding infinite loops in a Tomita

parser: they automatically modify grammars to remove offending constructs. Their approach

is known as Right Nullable GLR. It has a fast implementation (in part because it avoids the

brute-force stack search) but the approach of modifying grammars is contrary to our goals.

When using GLR parsing, it is possible to use any of the lower-powered LR automata as the

state machine that is executed nondeterministically. There has not been a lot of research into

the performance characteristics of different internal automata, but one study by Johnstone et

al. [56] finds that the use of LR(1) automata within GLR parsers affords little advantage over

using SLR(1) or LALR(1) automata internally. Longer lookaheads were not investigated.

4.4.2 GLR-based sub-sentence parsing

We have described a new extension of GLR parsing that allows parsing of fragments of sen-

tences. It achieves this by placing cyclic ‘pop nodes’ at the base of the stack to allow pop-

ping into unknown territory, and thus produce all possible parses of the sub-sentence. The

cyclic graph structure avoids a combinatorial explosion of pop nodes.

Rekers also used a GLR parser variant for sub-sentence parsing, but his approach used an

approximation of goto behaviour akin to SLR lookahead calculation. In fact, if our KParser

were implemented to use an SLRPopNode in place of the more accurate PopNode, it would

work exactly like Rekers version.

www.manaraa.com

125

4.4.3 Hybrid parsing algorithms

Our parser generator escalates its parsing algorithm to produce an automaton of hybrid

power. This has the advantage of keeping each portion of the automaton as simple as possi-

ble. More importantly, it leads to the technique of building an LR(k) parser (for k > 1) by

splitting states, and doing so only when it actually helps. We call the resulting parsers mini-

mal LR(k), to differentiate them from canonical LR(k) parsers produced by Knuth’s algo-

rithm [61], which maximally splits all states and is consequently impractical for real lan-

guages. Our state-splitting technique (combined with the heterogeneous k technique dis-

cussed below) yields practical LR(k) parsers. We are not aware of another current parser

generator that does so.

State splitting has been proposed before as a way of achieving practical LR(k) parsers. In

fact, the first paper to describe LALR(k) raised the possibility [22]. An algorithm was pro-

duced by Pager [82], [83]. This “lane-tracing” algorithm examines dotted items to determine

the paths down which lookahead flows, and thus to find states that can be split. Lane-tracing

is conceptually similar to the way our GLR parsers explore backwards from a start state.

However, the description of the algorithm is complex and in places lacking detail, especially

of how splitting is achieved efficiently. It is described fully only for LR(1) parsers, but

Pager reports success with longer lookaheads on real grammars.

The approach that is, perhaps, most similar to ours was produced by Fischer [32], although

he had different motivations. Fischer escalated parsing power from LR(0) through

NQLALR(1) and LALR(1) to LR(1). (NQLALR(1) is essentially an incorrectly imple-

mented LALR(1) parser; it can be obtained with our approach by having goto nodes pop to

all states that have a transition to the goto state, rather than just popping to the previously

pushed state.) Fischer used conventional (dotted item) parsing algorithms, and a version of

lane-tracing for splitting states. He did not use k > 1.

An algorithm to expand an LR(0) parser into a full LR(1) parser is presented by Spector [96]

and later extended [95]. Spector describes Pager’s algorithm as “extremely slow”. He fur-

ther states:

www.manaraa.com

126

Perhaps what has been lacking to popularize full LR(1) parser generation has

been that no one seems to have created an easy-to-understand and efficient

algorithm. This paper (and an experimental 2300-line program written in C)

takes a first step in that direction.

The spirit of the algorithm appears similar to ours: “it determines look-ahead sets by search-

ing the underlying LR(0) FSM”. Nevertheless, Spector’s papers do not specify the algorithm

in sufficient detail to allow them to be implemented by others.

An alternative (not state-splitting) route to obtaining practical LR parsers is described by Ko-

renjak [62].

4.4.4 Heterogeneous k

Conventional parsers use lookahead depth of only 1, in order to keep parse table sizes in

check. Our parser generator avoids table-driven implementations and grows lookaheads

only for states (in fact, only for some lookaheads within states) that need more lookahead,

producing an automaton with varying lookahead levels.

Parr’s thesis [86], as already noted, promoted the advantages of heterogeneous depths of

lookahead. His work concentrated on LL parsers, but the findings were applied to LR pars-

ers, with the exception of LR(k). This exception was based on the assumption that LR(k)

parsers could be built only using the dotted item algorithm. The use of a state-splitting algo-

rithm also enables heterogeneous k for LR(k) parsers.

Pager’s lane-tracing algorithm could also produce heterogeneous k parsers [82].

4.5 Evaluation

For the purpose of constructing rigorous static analysis tools, yakyacc represents a substan-

tial improvement over current parser development practice. It provides tool builders with an

integrated set of facilities that were, in any practical sense, previously unavailable. By this

measure alone the development has been highly successful.

www.manaraa.com

127

Our motivation for developing new parsing technology is to facilitate construction of new

software engineering tools, and in this regard yakyacc has also demonstrated its utility. The

following chapters describe complex applications built on yakyacc. These include our met-

rics and visualisation pipeline, Cook’s collaborative IDE [19], and Neate’s CodeRank engine

[77]. These applications have tested yakyacc-generated parsers much more thoroughly than

is normally the case for research tools. Moreover, we know of no other tool that would have

allowed these applications to be constructed as efficiently.

Yakyacc has been tested using a battery of JUnit tests, and a collection of over a dozen test

grammars designed to elicit problems across a range of lookahead depths and parsing

classes. More tellingly, we have generated parsers for difficult real grammars, including the

ambiguous Java exposition grammar, about which Tucker and Noonan say “The complete

Java syntax is immense in its number of grammar rules” [102]. The behaviour of our Java

parser has been verified by successfully parsing hundreds of thousands of lines of Java, in-

cluding many open source programs. We have also conducted back-to-back tests to compare

the behaviour of our original PDA implementation against the alternative Rekers-derived

version.

We have also generated parsers for yakyacc’s own utilities (bnf2xml and ebnf2xml). An

early prototype successfully tested our GLR implementation using the C++ grammar (and

also the C pre-processor grammar) on 250,000 LOC.

The runtime performance of generated parsers depends on the stylesheets used for code gen-

eration, and we have not yet made any formal measurements of the parser as a separate proc-

ess. Parser performance has always met user expectations, even in very demanding real-time

settings.

Parser generation normally takes a matter of seconds for parsers of lower power, even for

very large grammars. A large portion of this is IO overheads, reading in the grammar and

writing out the PDA. For difficult parsing classes (LR, or higher values of k), time is highly

dependent on the particular grammar used and the parsing class and lookahead depth. Gen-

erating an LR(1) parser for Java takes on the order of 15 minutes (running in an IDE on a

standard workstation). The current implementation makes no concessions to efficiency, and

is profligate with processing cycles in places. Further experimentation is needed to establish

www.manaraa.com

128

a clearer understanding of parser generation performance, including finding the realistic lim-

its for k for real grammars.

4.6 Chapter summary

We have described a new parser generator with sufficient power and flexibility to enable a

fundamental shift in how parsers are developed for static analysis purposes: the parsing tech-

nology adapts to suit the given grammar. By using an original GLR-based parsing algo-

rithm, we have been able to combine several previously separate techniques in one tool,

along with some new innovations, while keeping the design relatively simple. The result is

easier parser development and more rigorous static analysis.

www.manaraa.com

129

C h a p t e r 5

JST: Semantic modelling of Java code

Parsing exposes the surface structure of source code. Semantic analysis examines the deeper

structure and, in our work, exposes it in the form of a semantic model. Semantic analysis

recognises the conceptual entities that comprise software, rather than merely the syntax that

describes those entities. It also recognises relationships between entities, and consequently

models a program as a connected graph, rather than as discrete trees in the way that parsers

must.

The term semantic is overloaded, and to avoid confusion we note that our work is concerned

with programming language semantics, rather than with the semantics of problem domains

for which programs are written. In other words, we address concepts that are found in pro-

gramming language definitions (classes and methods, for instance), and not concepts that are

only found in specific applications (such as customers and accounts).

Even within the field of programming language semantics, semantic analysis encompasses a

range of activities, including formal ways of describing program behaviour such as opera-

tional semantics, axiomatic semantics and denotational semantics [102], and also analysis of

code characteristics such as semantic error checking, statement reachability, data flow, and

so on. We do not undertake these specific semantic analysis activities in our work; we are

instead interested in software structure information—the type system of the language—that

underpins all forms of semantic analysis, and also defines the data we need for metrics, visu-

alisations and other tools.

www.manaraa.com

130

By modelling the way in which a program uses the type system of its language, we can make

semantic concepts and relationships explicit, whereas they are implicit in parse trees. For

example, an extends clause in a parse tree provides the name of a superclass, but the super-

class itself is defined in another unconnected parse tree, and there may be more than one

class with that name. Similarly, semantic relationships that exist between types and the vari-

ables that use them, variables and the expressions that use them, methods and their invoca-

tions and so on are not evident in parse trees; related entities are named but no identifying

connection is made to their definitions. The fundamental task of our semantic model is to

identify the entities from which a program is made and resolve named references by identify-

ing target entities.

The task of looking up symbols (names) to resolve references is normally the responsibility

of a symbol table in compilers. From this term the name of our semantic modeller is derived:

Java Symbol Table (JST). The term symbol table evokes a simple data structure: a table in-

dexed by names. In early programming languages, a simple table may sometimes have suf-

ficed, but in current object-oriented languages, resolving names is a complex task involving

convoluted scope topology. Packages, source files, classes, inner classes, methods, blocks

and other semantic concepts all influence the look-up process, as do different relationship

types such as inheritance and containment, and look-up behaviour is modified by access re-

strictions (private, protected, etc), static modifiers and other mechanisms. A particu-

larly challenging issue—one that defeats many experimental tools—is resolving calls to

overloaded methods. In a language such as Java, almost the entire type system participates

in resolving method calls. It is necessary, for instance, to know the types of any expressions

used as parameters, because parameter types are significant in choosing among candidate

methods.

Although JST is an entirely new application, its design was influenced by work on symbol

tables for Java and C++ [66], [55]. Unlike those earlier tools, JST’s model is complete, in-

cluding resolving overloaded method invocations.

We have previously described JST in [49] and [51]. Some passages of this chapter appear in

those publications.

www.manaraa.com

131

5.1 Why Java?

Different languages support different semantic concepts. Unlike yakyacc, which by defini-

tion can generate a parser for any language, our semantic model had to represent the ele-

ments of a specific language in order to allow us to devise exact metrics and visualisations

for that language. Pragmatically, we also wanted to develop and test our semantic modelling

approach without the additional burden of making it language independent. In subsequent

work, we have extended the approach to cater to a wide variety of languages by modelling

the semantic entities of .NET [76], and by mapping them to our JST model [46]. This chap-

ter, however, documents the original JST model on which the extensions were based.

The language had to be object-oriented—because we are concerned with exposing OO struc-

ture—and statically typed. Statically typed languages present more information to static

analysis tools than dynamically typed languages. This is unsurprising, of course, since the

objective of static typing is to allow code to be checked before program execution.

Our initial attempts at semantic modelling were aimed at C++, in order to support a project

with a large (2,000,000 LOC) commercial C++ code base. This exercise was instructive, and

provided the initial motivation for a stronger parser generator, as explained in [48]. Yakyacc

solved the problem, and allowed development of a C++ semantic model decoupled from the

parser. Even so, we changed to modelling Java instead of C++, primarily because C++ uses

a pre-processor and Java does not. The use of a pre-processor substantially complicates the

task of static analysis, because the code seen by the tools does not match the code seen by the

programmer; this inhibits communication of metrics and visualisations, for example. To il-

lustrate the extent of this problem, in the C++ code we examined the #include pre-

processor mechanism multiplied the number of lines of code 250 times.

The version of JST documented here conforms to Java 1.3. Since this work began, the C#

language has emerged. It is similar to Java, but offers some advantages for static analysis.

In particular, it improves the static type system by including generic types. Java has subse-

quently been enhanced in a similar way and is now fully type safe, providing richer type in-

formation than before (although its type erasure approach means Java metadata is not as

helpful as the .NET alternative). For example, Java collections previously were defined to

hold only Objects, and so a static analyser could not readily determine relationships to ac-

www.manaraa.com

132

tual classes of objects held in the collection. With the generic types of Java 1.5, the actual

classes are available to a static analyser (of source code, rather than .class files). This evo-

lution of mainstream languages towards fully type safe semantics indicates an increasing

recognition of the value of static analysis information, and underlines the value of our ap-

proach. Recent work that we have conducted to accommodate improvements in .NET and

Java is recorded in [76], [46] and [12].

5.2 The type system of Java

The Java Language Specification [36] is a document of some 500 pages. Its bulk is due not

to the complexity of the syntax (which is described concisely by a grammar), but to the ex-

position of the language’s semantics. Like any OO programming language, Java has a rich

system of types and values. The language specification describes this system, including how

the concepts of the language are declared and accessed. These concepts include features such

as classes, interfaces, inheritance, methods and control structures, and the rules governing

their use, including scoping, type conversion, overload resolution, hiding, multiply inherited

fields, and so on.

Java has been promoted as a simple OO language and, in comparison to C++, it is. Neverthe-

less, its type system and scope rules are elaborate and sometimes subtle. The language speci-

fication contains many details and special cases that are likely to be outside the sphere of

knowledge of typical users of the language. For example, the specification contains state-

ments such as “Inner classes may inherit static members that are not compile-time constants

even though they may not declare them” (p 140) and “If an anonymous class instance crea-

tion expression appears within an explicit constructor invocation statement, then the anony-

mous class may not refer to any of the enclosing instances of the class whose constructor is

being invoked” (p 194). Examples of some of the language’s darker corners can be found in

[5].

Although human users of a programming language can avoid intimacy with obscure lan-

guage features, rigorous software tools should not. Our objective in building JST was to cap-

ture and expose a complete model of the type system of a Java program suitable for compre-

hensive static analysis. In the Java Language Specification, semantics are described in terms

www.manaraa.com

133

of an exposition grammar. The final chapter of the document introduces an alternative

grammar, saying: “This chapter presents a grammar for the Java programming language. The

grammar presented piecemeal in the preceding chapters is much better for exposition, but it

is not ideally suited as a basis for a parser. The grammar presented in this chapter is the basis

for the reference implementation.” (p 449)

The suggestion that the exposition grammar is unsuited to parsing arises, we suspect, be-

cause it is not LALR(1). (Neither is it LR(k), because it contains fundamental ambiguities.)

Using conventional parsing technology, developers of static analysis tools for Java are con-

fronted with a problem: the semantics of the language are defined in terms of one grammar,

but parse trees conform to another. As a result, developers must choose either to map seman-

tic rules onto the implementation grammar, or to transform parse trees so they conform to the

exposition grammar. Yakyacc eliminates this dilemma by generating a parser of the exposi-

tion grammar. Ambiguous constructs may be pruned from the parse tree afterwards, using

simple semantic rules.

Our semantic modelling approach takes advantage of the conformance of the yakyacc-

generated parser to the exposition grammar, to model semantic concepts with high fidelity to

their descriptions in the language specification.

5.3 Development approach

A small number of Java symbol tables are already available. Stanchfield and Parr [99] de-

scribe a symbol table that is part of a simple cross-reference tool for Java 1.1. It was subse-

quently developed into javasrc, an open-source hypertext cross-referencer for Java 1.3 [55].

These tools do not attempt to resolve overloaded method calls, and have several other limita-

tions, including simplified package naming, some syntax limitations, and no handling of

anonymous classes or member access specifiers.

We investigated improving code from javasrc as the basis for our symbol table, replacing

the ANTLR-generated parser with a simple reader of our XML parse trees. However we ul-

timately chose to design our own classes to more closely reflect the concepts described in the

Java Language Standard. This allowed us to be more confident that our code conforms to

www.manaraa.com

134

the standard, and gave us a good structure on which to graft the missing features, including

overloaded method resolution.

An alternative approach using Java’s reflection API was also considered. We are interested

only in analysing syntactically correct source code, and such code will have a corresponding

.class file emitted by a Java compiler. Java compilers embed metadata—symbol table in-

formation—in .class files so that this information may be reported by the reflection API.

Typically, Java programs use reflection to dynamically load classes that were unavailable at

compilation time. In Chapter 2 we noted that the reflection API constitutes a form of seman-

tic model, although it omits some details and abstracts others. We might, however, use re-

flection to derive our own more comprehensive model.

We investigated using reflection to extract symbol table information, and then using that in-

formation to connect semantically related portions of our parse trees. The appeal of this ap-

proach was threefold:

• All of the symbol table information was available in advance, so it reduced the com-

plexity added by order dependencies between declarations and look-ups as they were

discovered in the parse trees (because properties may be used before they are de-

clared, for instance).

• Symbol table information was available for classes for which source code was not

present, including standard library classes such as java.lang.Object.

• Third-party support for resolving overloaded method calls was available.

The reflection API can look up a method, given its name and parameter types. This is suffi-

cient data for the API to perform method resolution, but as Hosler [44] has noted, it does not.

The reflection API performs only an exact match on parameter types, whereas full method

resolution must consider type promotions and find the most specific method from a set of

applicable methods. Hosler provides a BetterMethodFinder class that extends the reflec-

tion API to include proper method resolution.

This reflection-based method resolution proved to be less helpful to us than anticipated. The

reflection API is designed to expose the public interface of a class, and the method resolution

www.manaraa.com

135

is accordingly suitable for client classes that are not part of the protected, private or default

(package) scopes. This restriction, while appropriate for reflection’s intended purpose, does

not necessarily hold for the classes we are analysing; we need to resolve calls of all methods,

not just public ones. In addition, we are interested in a class’ internal use of methods, fields,

local variables, and parameters. This information is not available through reflection.

We concluded that reflection did not eliminate the need to build our own complete symbol

table from parse tree information, but was useful for resolving references to classes for which

we did not have source code. This means that our symbol table is populated with declara-

tions found in parse trees, and whenever a look-up references some external symbol for

which source code is not present, (java.lang.String, for instance) the missing information

is supplied by reflection.

Our semantic model is, in essence, the result of an object-oriented data modelling exercise

for the domain of the Java type system. The model represents the scopes and declarations

that can be identified in the language specification and implements their look-up behaviour.

5.4 JST architecture

Parse trees represent a program as discrete translation units, but semantic dependencies con-

nect them into a single graph. In order to make all semantic dependencies explicit, the se-

mantic model must span an entire program. JST builds the semantic model monolithically:

all parse trees for a program are loaded and the complete model is assembled in memory be-

fore being saved as an XML file. This approach keeps implementation relatively simple, at

the expense of requiring sufficient memory to contain the entire model. (Section 5.8 dis-

cusses an extension that allows the model to be constructed incrementally.)

JST runs once per program, much like a conventional linker. It reads all the parse trees for a

program into memory, and walks through them to populate the symbol table with declara-

tions and look them up to resolve references. Any references that are not resolved by decla-

rations from the source code are supplied by reflection. When the process is complete, the

symbol table is exported as an XML file, which also contains all the parse trees.

www.manaraa.com

136

5.5 JST model

The objects that make up the symbol table are:

• Packages and source files.

• Built-in types: the primitive types (int, boolean and void, for instance), the null
type and arrays.

• User-defined types: classes and interfaces. Here user-defined means types that are
defined by a programmer in Java code, that is all classes and interfaces, including li-
brary classes such as java.lang.Object and java.lang.String.

• Typed declarations: declared entities (variables or operations) that have a type, that
is, fields, local variables, parameters, methods and constructors.

• Executable sections of code: blocks and field initialisers.

This is the complete set of elements of the Java type system. The objects are all concepts

with which every Java programmer is familiar and the reasons for including most of them are

self-evident. However, the inclusion of source files, blocks and field initialisers warrants

further explanation:

• Although source files are not declared within source code (but instead contain it),

they are included in this set because they define scopes that are significant in look-

ups of packages, classes and interfaces.

• Similarly, blocks (sequences of statements delimited by braces) define scopes that

contain local variables, classes, interfaces and other blocks. However, statements

other than declarations and expressions within blocks are not represented as semantic

model objects because they act only as clients of the type system and do not define

elements of it. They are adequately described by their syntactic structure. The client

relationships between semantic model objects and the expressions that use them are

represented in the semantic model, as we explain below.

• Field initialisers, which provide initial values for class fields, are a special case in

which expressions that use semantic model objects do not occur within blocks. We

include field initialisers in the model to provide a place for storing these client rela-

tionships.

www.manaraa.com

137

All direct relationships between semantic model objects are modelled. A containment hier-

archy is defined by the following relationships (all one-to-many or one-to-one):

• A symbol table contains the default package.

• A package contains sub-packages.

• A package contains user-defined types.

• A user-defined type contains inner user-defined types.

• A user-defined type contains fields.

• A user-defined type contains methods.

• A class (a special user-defined type) contains constructors.

• A class contains initialiser blocks.

• A field contains a field initialiser.

• An operation (a method or constructor) contains parameters.

• An operation contains a block (the body of the operation).

• A block contains inner blocks (including catch blocks).

• A catch block (the scope of a catch statement) contains a parameter.

• A block contains local variables.

• An executable section of code (a block or initialiser) contains user-defined types.

• A type contains an array of that type (which is itself a type).

This containment hierarchy spans the entire contents of a program. (It does not, however,

span the entire semantic model. The portion of the semantic model that represents built-in

types is not included in this hierarchy, in the same way it is not included in any program.)

Beneath the level of packages, the containment hierarchy reflects the syntactic containment

structure of programs and needs no further explanation. At the top of the composition hier-

archy, packages—rather than source files—contain classes. This design was chosen because

source files are not available for all classes, but we still need to model classes obtained by

reflection. All classes, however, must reside in a package.

www.manaraa.com

138

In addition to the containment relationships, several association relationships are modelled.

Omitting reciprocal relationships, the associations are:

• A package is defined by source files.

• A source file imports scopes (import on demand). The scope must be a package or
user-defined type.

• A source file imports user-defined types (import a single type).

• A source file defines user-defined types.

• An interface extends super-interfaces.

• A class extends a superclass.

• A class implements interfaces.

• An operation throws classes.

• An executable section of code refers to typed declarations (e.g. uses a variable or in-
vokes a method).

Most of the association relationships listed above are straightforward reflections of the Java

type system. An exception is the last one, the refers to relationship from executable code

sections (blocks and field initialisers) to typed declarations. Executable code sections con-

tain expressions that use declared variables and operations. The refers to relationship con-

nects each such expression in an executable code section with the semantic model object that

the expression uses. In this way, client relationships produced by expressions are recorded in

the nearest enclosing semantic model object (without loss of information—the parse tree

nodes of the expressions are also referenced). This means that the semantic model is self-

contained: all relationships between semantic model objects can be found without reference

to parse trees if desired.

The listed objects and relationships comprise the entire semantic model. The model includes

all direct relationships that occur between elements of the Java type system, including inheri-

tance, data usages and method invocations. JST implements full resolution of overloaded

methods (saving the result in refers to relationships), using type promotions, overriding and

access control. It connects all declarations with their types, and all usages of declared prop-

erties with the declarations. The original parse trees are retained, with references into them

from the semantic model.

www.manaraa.com

139

Figure 95 provides an overview of the classes in the model. Although the diagram appears

complex, the objects and relationships represented are only those listed above. Class type

declarations are represented by ClassType, for instance, and method declarations by

MethodDecl. The number of classes is somewhat greater than might be expected from the

list above because of the use of abstract classes to capture generalisations. For example,

UserType (corresponding to a user-defined type) is an abstract class that captures the com-

monalities of InterfaceType and ClassType. A level higher, ReferenceType captures the

common features of UserType and ArrayType. Higher still, TypeDecl generalises all types.

Containment relationships can be recognised in the diagram by the diamond-shaped aggrega-

tion symbol.

The next sections supply additional detail about the design of the semantic model classes.

www.manaraa.com

140

Figure 95: JST overview class diagram

www.manaraa.com

141

5.5.1 Main classes

The entrypoint for the JST semantic model is SymbolTable (Figure

96). It contains the default package object, which ultimately con-

tains all other declarations of a program. SymbolTable provides en-

try points for adding semantic objects and for looking them up in or-

der to build relationships. It is a lightweight class (for a symbol ta-

ble) that delegates model representation and lookup to the declara-

tion classes themselves.

When JST is executed, it first invokes SymbolTable’s addParse-

Tree() method for each parse tree. This method walks through a

parse tree to locate declarations and instantiates them as model ob-

jects of the appropriate class. This process builds the containment

hierarchy, but not association relationships. Once all parse trees are

loaded, the crossReference() method is called to find association

relationships. This process indirectly invokes the public get…()

methods of SymbolTable, which look up names in the scope struc-

ture. The details of populating the model are described in the Sec-

tion 5.6.

The Reflection class encapsulates the Java reflection API. When-

ever a look-up fails to find a named element, SymbolTable passes

the request to the Reflection class. Reflection instantiates the

requested element as part of the model and, using a greedy approach,

also instantiates all related elements that are revealed by the reflec-

tion API. In this way, library classes used by source code are in-

cluded in the semantic model so there are no dangling references.

Reflection provides only the public interfaces of classes, however, so

the internal structure of reflected classes is not modelled.

Scope and Decl, shown in Figure 97, are the main abstractions of the model. A Scope is a

container of declarations, and provides lookup functions to retrieve the declarations. Al-

though scopes vary in what they can contain—a package scope, for example, can contain

Figure 96: Main JST
classes

www.manaraa.com

142

classes but not methods—Scope pro-

vides a lookup method for every pos-

sible search. Irrelevant searches sim-

ply return an empty result. Scope is

implemented by PackageDecl,

SourceFile, ReferenceType, Op-

erationDecl and Block.

Decl is the root of the declaration

hierarchy. PackageDecl, Source-

File, TypeDecl, TypedDecl and

ExecutableCode inherit from it. All declarations have a name and occur in some scope;

names are generated for anonymous declarations. The concept of a declaration has been

broadened to encompass all relevant semantic features in a Java program; source files and

blocks (sequences of statements delim-

ited by curly braces) are also considered

to be declarations. This simplifies the

design by allowing all program features

to be treated consistently at an abstract

level. Similarly, all Decls can return a

modifier (public, final, static, etc),

although only member declarations will

return non-zero values. (We represent

modifiers as bit-mask ints to be consis-

tent with the Java reflection Modifier

interface.)

Any declaration that can contain other

declarations is also a Scope, and conse-

quently provides lookup methods to re-

trieve its contents by name. Thus, decla-

rations implement the scope and lookup

rules of the language; each type of decla-

Figure 97: Scope and Decl classes

6.5.5.1 Simple Type Names

If a type name consists of a single Identifier, then the identifier must
occur in the scope of a declaration of a type with this name, or a com-
pile-time error occurs.

It is possible that the identifier occurs within the scope of more than one
type with that name, in which case the type denoted by the name is
determined as follows:

• If the simple type name occurs within the scope of a visible
local class declaration (§14.3) with that name, then the sim-
ple type name denotes that local class type.

• Otherwise, if the simple type name occurs within the scope
of exactly one visible member type (§8.5, §9.5), then the
simple type name denotes that member type.

• Otherwise, if the simple type name occurs within the scope
of more than one visible member type, then the name is am-
biguous as a type name; a compile-time error occurs.

• Otherwise, if a type with that name is declared in the current
compilation unit (§7.3), either by a single-type-import decla-
ration (§7.5.1) or by a declaration of a class or interface type
(§7.6), then the simple type name denotes that type.

• Otherwise, if a type with that name is declared in another
compilation unit (§7.3) of the package (§7.1) containing the
identifier, then the identifier denotes that type.

• Otherwise, if a type of that name is declared by exactly one
type-import-on-demand declaration (§7.5.2) of the compila-
tion unit containing the identifier, then the simple type name
denotes that type.

• Otherwise, if a type of that name is declared by more than
one type-import-on-demand declaration of the compilation
unit, then the name is ambiguous as a type name; a compile-
time error occurs.

• Otherwise, the name is undefined as a type name; a compile-
time error occurs.

This order for considering type declarations is designed to choose the
most explicit of two or more applicable type declarations.

Figure 98: Example name look-up rules

www.manaraa.com

143

ration knows its own structure and rules for looking up names. If a lookup fails locally in a

scope, the request is passed to other, higher-level scopes. In this way lookups search pro-

gressively wider scopes without the need for a current scope stack. For example, if we look

up a method name in an inner class, the search will traverse the inheritance hierarchy, includ-

ing interfaces, followed by the containment hierarchy beginning with the outer class.

 The rules controlling name look-ups in Java are not trivial. For instance, the rules for look-

ing up unqualified (simple) type names are shown in Figure 98. As can be seen in this de-

scription, the order in which scopes are searched is not always self-evident: when a source

file is searched for a type, so too are single type imports (that is, import statements without a

wildcard); the package that owns the source file is searched next, and finally the import on

demand (wildcard) packages and classes specified in the source file are searched. JST im-

plements all of the name lookup rules defined by the JLS.

Figure 99 shows details of Pack-

ageDecl and SourceFile. The im-

portOnDemand collection of Source-

File contains Scope objects, which

in practice will always be Pack-

ageDecls or ClassTypes. When

searching for types, SourceFile

calls the LookupType() method of

these Scopes. Strictly speaking,

Scope is a more general type than

necessary (since other declarations

also implement Scope), but the re-

sulting design does not cause prob-

lems and is simpler than alternatives.

The remainder of the design of Pack-

agDecl and SourceFile is largely

mechanical, providing implementations for the inherited contracts and getters and setters for

relationships.

Figure 99: PackageDecl and SourceFile

www.manaraa.com

144

5.5.2 Types

Figure 100 shows details of

TypeDecl and its subclasses.

Most of the methods are pre-

dictable: constructors for

building the model, setters

and getters for relationships,

look-ups to implement the

Scope interface in Refer-

enceType and its subclasses.

Primitive types and the null

type are implemented as

public static objects.

Each TypeDecl may have

only one ArrayType object,

as the dimension of the array

is a runtime property and not

part of the type. ArrayType

is an example of the decora-

tor pattern, and allows nested

decorators to form arrays of

arrays, to any depth. Java

arrays “magically” have a

length field and clone()

method. These are supplied

by ArrayType.

Figure 100: TypeDecl and its subclasses

www.manaraa.com

145

 A significant fraction of the implementation of type classes supports method look-up, in-

cluding resolving overloaded method calls. Figure 101 is a UML sequence diagram of

UserType’s lookupMethod() implementation. The full JLS description (§15.12) of how

method invocations are resolved is too involved to warrant repetition here, but the main ideas

are evident in our sequence diagram.

5.5.3 Typed Declarations

Figure 102 is a detailed class diagram for the hierarchy that represents declared variables and

operations, using the VariableDecl and OperationDecl abstractions, respectively. Again,

most methods and attributes of the design need no further elaboration. OperationDecl is a

little more complex because it is a Scope that contains ParameterDecls, and because it

(with its subclasses) provides methods that support resolution of overloaded methods, as

Figure 101: Method invocation resolution

www.manaraa.com

146

seen in Figure 101. The accessible() method checks access modifiers, hides() checks

overriding in the inheritance hierarchy (including interfaces), applicable() checks that the

types of expressions used as actual parameters can be assigned to the formal parameter types

of the method, and isMoreSpecific() determines which of the possible methods most

closely matches the actual parameter types. These last two methods make use of TypeDecl’s

assignableFrom() method to handle type promotion and conversion. The vocabulary used

for naming these methods is that of the language specification.

5.5.4 Executable classes

The remaining classes of the model are those that contain sections of executable code, shown

in Figure 103. Although we describe the classes in this figure as the lowest-level elements in

the semantic model, all ExecutableCode objects can contain UserTypes and so are not nec-

essarily leaf nodes in the containment hierarchy. Blocks also add a collection of Local-

VariableDecls, and CatchBlocks add a further ParameterDecl. As we have noted, when-

Figure 102: TypedDecl and subclasses

www.manaraa.com

147

ever any expression is found within the parse

trees of blocks or field initialisers, the Typed-

Decl named by that expression is identified

and stored in ExecutableCode’s refersTo

collection. The collection is implemented as a

Map, in which the keys are TypedDecls and

the values are sets of parse tree nodes defining

the expressions that refer to that TypedDecl.

5.6 Populating the model

Many name look-ups in Java must occur in an

order different from the syntactic structure of

a file. For example, attributes may be used in

a source file before they are declared. More

generally, Java (unlike C++) does not distin-

guish the declaration of a feature from its

definition, so the syntactic structure does not

guarantee that features will be declared before they are used. A semantic analyser for Java

might choose to remember unresolved references until the target declarations are discovered,

or alternatively, might process parse tree nodes in an order that ensures declarations occur

before usages. JST (in this version) takes the latter approach.

JST walks parse trees using the visitor design pattern [35]. As it encounters declarations, it

instantiates the classes that comprise the semantic model. Multiple passes are made through

any one parse tree, so that the model is assembled in increments. Some passes discover rela-

tionships, such as inheritance and invocations. JST imposes an order on its processing of

parse trees to ensure that every feature of a program is declared before it is looked up, or

needed for looking something else up. For example, all packages, classes, methods and pa-

rameters are declared before any method invocation is looked up. By ordering model con-

struction in this way, relationships between objects are discovered only after the target ob-

jects are sure to be present.

Figure 103: ExecutableCode and its subclasses

www.manaraa.com

148

Initially, all parse trees are examined for declarations; every declared feature in a nameable

scope is instantiated in the model. These declaration objects are, at this stage, related only by

their containment structure. Each declaration is given a name, but no names are looked up

yet.

To complicate matters, some declarations (such as attributes) have semantic scope while oth-

ers (such as local variables and classes declared inside blocks) have syntactic scope: They

are accessible only from the point of declaration forward to the next closing brace. Syntacti-

cally scoped declarations are omitted from the initial population of the model, as they should

not be found by lookups until the appropriate point in the parse tree is reached.

Once all initial declarations are known, they are connected together by looking up the names

of features they reference. This cross-referencing happens in the following order:

• Packages and classes named in import statements are found. These must be known
before classes can be looked up.

• Superclasses and interfaces named in extends and implements clauses are found. This
inheritance structure is needed for subsequent lookups.

• The types of all class members (fields and methods) are found. Types must be
known in order to analyse expressions such as a.b.c.d – the type of a must be known
to determine the existence and type of b, etc.

• Each code block is processed statement-by-statement, in parse tree order. Lexically
scoped types and variables are instantiated. Identifiers in expressions are looked up.

At any point during cross-referencing, a lookup of a named type (class or interface) will fail

if a parse tree for that class or interface was not provided to JST. Whenever this happens,

Java’s reflection API is used to load public interface information from .class files so that the

semantic model is complete and all references are resolved. Reflection, however, does not

expose the internal features of the reflected classes, such as local variables or method invoca-

tions.

www.manaraa.com

149

5.7 Emitting the model

At the end of this processing, all declarations, types, scopes and the connections between

them have been constructed and the semantic model is complete. The model is emitted as an

XML file in order to make it available for further static analysis. Examples are provided in

the next chapter.

Just as we used the

visitor design pattern

to walk parse trees, we

use another type of

visitor to walk the se-

mantic model. The

ModelVisitor hierar-

chy (Figure 104) is

designed to allow visi-

tors to be developed

for arbitrary purposes,

including metrics cal-

culations, without re-

quiring modifications

to the model itself.

ModelVisitor is an interface with a signature for visiting each class in the model, including

abstract classes. (This is a variation on the usual decorator pattern that simplifies some met-

rics and other processing.) CompositionVisitor is an implementation that includes code to

navigate through the entire composition hierarchy of the model, but otherwise does nothing;

this means subclasses can omit navigation code unless they need to take some alternate

route. XMLWriter is a concrete visitor that translates the model into XML.

Figure 104: ModelVisitor hierarchy

www.manaraa.com

150

5.8 Discussion

5.8.1 Strengths

JST models a complete Java program with high fidelity to the language specification, and

exposes it for further processing by other static analysis tools. This is a significant change

from conventional tool-building, in which each different tool performed its own ad hoc ex-

traction of semantic information customised for the purpose of the tool. Compilers are an

example: they must acquire all of the same information found by JST, but do so only for the

context of compiling and do not reveal a model.

In the absence of comprehensive semantic models, some metrics (and other) research tools

have relied on simplifying assumptions (often unstated in the literature) such as having

unique names in a whole program. In real programs such assumptions do not hold and re-

search tools are often unsuitable for examining software outside laboratories. JST addresses

this difficulty by providing a comprehensive model that captures all the semantic entities and

relationships of the Java language without imposing restrictions beyond those of the lan-

guage itself.

JST is distinguished from other semantic models by being based on a parser that conforms to

the Java exposition grammar. The semantics of Java are defined in terms of this grammar,

and we are consequently able to derive a semantic model directly from the language defini-

tion and implement it without having to translate between alternative syntaxes. JST records

the relationships between semantic and syntactic structures, producing a model that makes

semantic-syntactic connections clear while maintaining rigorous separation of concerns.

Clear separation between syntactic and semantic models is another distinguishing character-

istic of JST. A more conventional approach is to annotate parse trees with semantic informa-

tion [102], resulting in a tightly coupled model in which semantic entities cannot be unbun-

dled from syntax. Some systems, such as the Eclipse JDE described in Chapter 2, have

evolved into hybrid syntactic-semantic systems that carry the legacy of this approach and

exhibit a less clear structure and even redundant ways of storing and accessing information.

www.manaraa.com

151

Eclipse’s semantic model is also an example of a system subject to requirements other than

just modelling software structure—it also provides for the needs of coordinated IDE tools—

and does not possess the singularity of purpose of our modelling approach. Many other sys-

tems capable of representing software concepts have been developed with agendas other than

faithfully modelling software structure to enable further static analysis, and consequently

they are less well suited to our purposes.

Java’s reflection API is probably the most widely-used model of type system objects. Our

model can be examined, much like Java’s reflection API, by tools requiring information

about the structure of Java programs. Our model exhibits higher resolution (as can be seen by

comparing the number of classes in Figure 8 and Figure 95) and is more comprehensive than

that of reflection. It resolves overloaded method invocations, includes information about the

internal structure of methods, shows uses of variables, and relates the semantic structure to

the syntactic structure. Further, the model is available as an XML file, making it accessible

to other forms of processing, including XSLT.

 JST is still a research tool, but, in combination with yakyacc-generated parsers, it has re-

ceived significant use in a number of related research projects by several Software Engineer-

ing and Visualisation Group (SEVG) members. In our CodeRank work [77] we tested JST

on a corpus of 345,000 lines of open source Java code. In Carl Cook’s work [19], JST was

used as the repository of a collaborative IDE that used very frequent re-parsing of source and

extracted semantic information to be fed back to developers in real time. More examples are

presented in the next chapter.

Memory usage requirements of JST

have so far proven manageable. The

size of the semantic model itself is

small compared to the size of parse

trees. Our approach, however, retains

all parse trees for a program in memory

(and does not attempt to be miserly

with their storage); this is a concern for

large code bases. Nevertheless, usage

to date has not encountered problems.

0

10

20

30

40

50

60

70

80

0 1000 2000 3000

Lines of Code (LOC)

S
iz

e
of

 M
od

el
 (M

b)

Figure 105: JST memory usage

www.manaraa.com

152

Cook recorded the memory footprint of his IDE—which is determined largely by the size of

the JST model and its parse trees—for a range of small projects. We reproduce his results in

Figure 105, which suggests that memory growth will scale without incurring disproportion-

ate consequences.

5.8.2 Weaknesses and limitations

Our programs have not yet been sufficiently tested to be considered industrial strength. JST

(in the version described here) requires complete, error-free code, and all library classes that

are reachable (transitively) from the source code must be available in the classpath. If errors

do occur they are handled inelegantly. Error messages are few and terse. This is not a con-

cern for our current pipeline applications, which analyse only code that is known to compile,

but future applications may be more demanding.

In some places the code would benefit from refactoring to remove the legacy of earlier de-

sign decisions. In particular, JST still uses an early parse tree implementation and its own

parse tree visitors, rather than re-using the better ones now provided by yakyacc; this is a

mechanical (but tedious) change.

JST does not currently prune ambiguous reductions from the parse tree; they are just ignored.

This was initially a deliberate decision to keep full information, and even allow metrics that

measure the level of ambiguity in code. However, the presence of parse tree nodes that are

not semantically meaningful can be misleading when calculating other syntactic metrics.

JST implements reciprocal relationships whenever it needs them to perform look-ups, but in

some other cases relationships remain directional. This is not a problem when calculating

metrics using XSLT, for example, because the XSLT processor automatically builds reverse

indexes when needed. In order for JST to serve as an API that supports arbitrary traversals

of the model, however, reciprocal relationships (and their getters) should be available. This

is a simple change.

JST generates names for un-named elements of the model such as anonymous inner classes.

So too does the Java compiler, but it uses different names. This will become a problem if

library code for which we have no source references code for which we have source: lookups

www.manaraa.com

153

won’t find the names generated by the Java compiler. The solution is to have JST emulate

the name generation of the Java compiler.

As we have remarked, JST uses a monolithic approach that might cause problems with large

amounts of code. Large XML files can be greatly compressed because of the redundancy of

mark-up, but reducing the memory usage of the program requires a code change. This could

be achieved by adding a layer of indirection between the semantic model and parse trees,

allowing trees to be unloaded when not in use.

5.8.3 Extensions

We have mentioned several projects that extend JST in various ways. In [21] we drop the

requirement that source code be complete. This is achieved by modelling looked-up rela-

tionships between semantic concepts using a reference object, rather than just a pointer. This

allows a reference to be in an unresolved state, but store the name for so that it may be

checked later.

Reference objects could also be used to simplify the task of building the semantic model.

Rather than requiring multiple passes over parse trees in order to ensure objects are declared

before being looked up, we could declare everything with broken references and then resolve

them.

JST is Java-specific, and currently conforms to version 1.3. We have, however, used JST as

the basis of other projects, including developing a similar model for .NET [76] and extending

the JST model to include Java 1.5 semantics, as well as providing a mapping between JST

and .NET [46].

www.manaraa.com

154

C h a p t e r 6

Measuring and visualising Java programs

The software described in previous chapters produces a model that exposes the syntactic and

semantic structure of Java programs, in a form suitable for further processing by software

tools. In this chapter we describe examples of tools that make use of the model, with empha-

sis on the role the model plays in underpinning research into software metrics and visualisa-

tions. The work documented in this chapter was undertaken by several members of the

SEVG, in collaboration with the author. Many of the figures shown here are reproductions

or variations of figures in SEVG publications. However, all of this work relies on the under-

lying model technology.

The information in JST has many potential applications that may help software engineers

understand and improve their designs. For example, it may be used to:

• Calculate software metrics.

• Construct software visualisations.

• Enable auditing of software to ensure it complies with code standards, design policies

and heuristics.

• Support translation of source code into UML diagrams and other alternative repre-

sentations.

www.manaraa.com

155

• Support collaborative software engineering environments by identifying software

neighbourhoods and characterising their proximity.

• Track software evolution by recording different versions of the model over time.

• Direct software testing efforts by identifying regions of greatest interest.

• Assist with project management by characterising the size and topology of software

components.

• Underpin further static analysis, such as flow graphs and code reachability analysis,

by supplying the base information from which these are derived.

• Underpin dynamic analysis such as performance measurement and memory profiling

by providing a static structural framework to which dynamic information may be at-

tached.

The main thrust of this thesis is the acquisition and representation of static software structure

information to facilitate applications such as these. The above list is far from comprehen-

sive, and can be expected to grow as the discipline of software engineering increasingly em-

phasises maintenance, evolution and refactoring of existing code rather than “big up-front

design” approaches.

Many software tools of the kinds listed above already exist, with a correspondingly diverse

range of techniques for acquiring syntactic and semantic information. Our approach confers

advantages by elevating the importance of a software model as a fundamental component of

this family of tools and isolating it from its applications so that it is general-purpose and re-

usable. Our mode is constructed with improved rigour, including by decoupling syntactic

and semantic model construction.

To support a broad range of potential tools, the model must be rigorous so that the data can

be reliably interpreted in diverse contexts, comprehensive so that it caters to various needs,

and flexible so that it can be accessed and applied in different ways. As we have noted, our

approach improves rigour by conforming to the JLS exposition grammar and its associated

semantic description. The complete set of Java semantic concepts and relationships is cap-

www.manaraa.com

156

tured, ensuring the model is comprehensive. The model may be accessed directly through its

API, or via an XML representation that externalises the information, allowing unconstrained

manipulation of the data. Both interfaces have strengths in different areas; the user is free to

choose the most suitable alternative for a particular task.

The SEVG research group has developed a number of experimental applications that make

use of our model and models derived from it. These include original metrics and visualisa-

tions, auditing of software using design heuristics, translating source code into UML class

diagrams, providing a repository for a collaborative IDE, and others. The success of these

research projects provides evidence of the efficacy of our modelling approach in a range of

roles. The full set of developed applications is too extensive to cover adequately here. In

this chapter we describe our approach for deriving software metrics and visualisations.

Although we have created a number of new metrics and visualisations as part of this re-

search, our main goal here is not to evaluate or promote any specific metrics or visualisa-

tions, but instead to provide evidence of the suitability of our framework for deriving and

presenting software structure information. We suggest that many valuable metrics and visu-

alisations have yet to be developed. By enabling arbitrary new metrics and visualisations to

be developed without also requiring custom data acquisition tools to be developed, we hope

to encourage experimentation with, and ultimately adoption of, better metrics and visualisa-

tions.

All of the metrics and visualisations work described here was undertaken collaboratively

with Dr. Neville Churcher, and credit for the visualisation development in particular is

largely due to him.

6.1 The role of metrics and visualisations

As we remarked earlier, programs are routinely of such size and complexity that they cannot

be understood in their entirety. This difficulty is compounded by incessant change as soft-

ware is developed and maintained. Even so, every part of a program must be constructed

with precision and exacting attention to detail.

www.manaraa.com

157

In order to make progress on overwhelmingly complex programs, software developers must

be able to concentrate their attention on characteristics salient to some problem under con-

sideration, and suppress inconsequential details. This is a challenging task because in any

non-trivial software design a multitude of forces are present, and these simultaneously influ-

ence and are influenced by the designer’s judgement of which software features are perti-

nent. In a single design problem, a designer may have to balance diverse influences such as

architectural constraints (for example, keeping a system structured in layers), hiding informa-

tion, minimising coupling, conforming to design patterns, modelling domain concepts, en-

suring adequate performance, communicating the intent of the design to human readers, and

many more. This is an extreme case of the focus+context information visualisation chal-

lenge that arises when observers need to see some region at a high level of detail and the en-

virons at a lower resolution, yet retain the relationship between them.

To solve design problems of this nature, a designer must form rich mental models of soft-

ware structure and the forces operating on that structure, while abstracting, approximating or

eliminating most of the system from consideration. In conventional programming practice

this task is often performed with source code as the sole input to the design process. The

manifest detail and innately linear organisation of source code oblige the designer to select,

filter, cluster and abstract information in order to synthesise a suitable mental model.

Some tools that help designers filter and assimilate relevant information do exist. For exam-

ple, code browsers aid navigation around source code and support searching for features such

as variable usages. UML diagrams provide alternative perspectives that emphasise different

aspects of designs, such as class inheritance structure or object interaction. Javadoc provides

another view. While these tools are very valuable, they are not sufficient to eliminate the

problems of software complexity and information overload.

Software metrics have long been advocated as a means of distilling noteworthy observations

from a morass of code. Metrics are an important branch of software engineering with an ex-

tensive literature. Textbooks such as [31], [18] and [109] provide an overview. Our interests

lie in the sub-field of object-oriented metrics [42] and in particular with static software struc-

ture metrics [9] [68].

www.manaraa.com

158

Although some software metrics have made inroads in the domain of software development

processes and project management, particularly for tracking program and component size,

they have not in general become an integral part of software design activities. One obstacle

to their wider use has been the difficulty of acquiring correct, complete and self-consistent

data from which they may be calculated; earlier chapters describe our efforts to address this.

A further obstacle is the inherent complexity of design with its multitude of non-orthogonal

dimensions. No single metric can capture all facets of a design problem. Indeed, some di-

mensions of design such as the degree to which it models the problem domain are beyond

the reach of automatable metrics, while still others have, as yet, no suitable metrics defined.

Even when appropriate metrics can be calculated, inappropriate communication of the met-

rics may merely compound information overload problems.

Despite these concerns, we maintain that metrics can fulfil a valuable role in informing soft-

ware designers. To attain their potential, we need a framework that allows calculation of di-

verse metrics targeted toward specific features of interest in design problems, and efficient

means of communicating the results. Just as a set of relevant features in a design problem

will span a range of abstractions and localities, metrics should capture information at a vari-

ety of levels of granularity and precision, in specific software neighbourhoods—where a

neighbourhood is defined by the proximity of semantic elements.

At one extreme, metrics can usefully quantify concrete, local aspects of code such as Lines

of Code (LOC), NPATH [78], or number of parameters. Metrics of this kind have received

most attention in the literature. At the other extreme are metrics that capture inherently fuzz-

ier, more holistic and more ambient characteristics of the software. Such metrics can help a

designer answer questions such as: Which parts of the software are relevant to the current

problem? Which features of the design are most central? Is the design growing too com-

plex? How heavily coupled are its components? Which parts of the design are most in need

of restructuring? Questions such as these cannot be answered by any single metric, but care-

fully chosen families of metrics, communicated unobtrusively, might allow a designer to

reach a judgement more efficiently than by just reading code.

Large tables of metrics—even if they contain potentially valuable observations—are an inef-

fective means of communicating results or resolving software designers’ information over-

load problem. Tables do not make trends and relationships explicit. The field of information

www.manaraa.com

159

visualisation tackles the problems of communicating large, complex data sets. Information

visualisation is a substantial research field—[7] and [97] provide an overview—and one that

is encountering new opportunities as processing power and display technology continue to

improve.

Conventional graphs and charts (histograms, line graphs, Kiviat charts, etc), are established

visualisation techniques that can play an important role in communicating software metrics

information, just as they do in other information rich domains. However, software raises

new challenges for conventional visualisation techniques:

• It is difficult or impossible to capture in 2D graphs or charts the volumes of informa-

tion and the many dimensions of interest.

• It is harder still to accommodate the mercurial changes in perspective as a designer

considers various aspects of a program. The use of different views and metaphors

can convey a variety of perspectives, but introduces the need for smooth transitions

between them.

• Software metrics often exhibit extremely nonlinear distributions and extreme outliers.

Adjusting linear scales to accommodate the full range of values can suppress virtu-

ally all information in the graph except the extremes.

• Similarly, software metrics distributions are often heavily skewed and spread across

large ranges, so that the density of data to be portrayed is inconsistent across different

regions of a visualisation.

• Software designers need information at very diverse levels of abstraction, from archi-

tectural structures to code details: the focus+context problem.

• Conventional information displays are often optimised for communicating precise,

undistorted detail of some isolated aspect of a system, rather than the more holistic,

interconnected and faceted issues of importance to software designers.

www.manaraa.com

160

• Software exists in a domain of pure information that lacks physical underpinnings.

This means that it does not have any inherent geometry around which visualisations

may be structured, in the way that scientific visualisations do.

A further obstacle to communication encountered when using conventional display tech-

niques is the problem of disassociation of metrics from the underlying structures that the

metrics describe. Information gleaned from a line graph, for example, needs to be integrated

into a designer’s mental model by associating graph data with model features. The graph

representation may provide few cues about how to achieve this. Our work explores the pos-

sibility of reducing this problem by integrating metrics into software structure visualisations.

We first apply some visual metaphor that depicts software structure, giving us a framework

to which metrics information can be added as adornments of various types.

The most familiar and immediate representation of software structure is source code itself.

We can visualise many metrics by decorating source code in a variety of ways. For example,

we might indicate the age of a segment of code (since it was last edited) using colour, per-

haps by yellowing the background progressively as the segment ages. In this way newly ed-

ited code appears brighter and is more likely to draw the attention of a developer—a boon

when tracking down recently

introduced bugs. Figure 106

shows a screen-shot of a text

editor augmented with code age

line colouring. This editor is

part of a collaborative IDE

based on our JST model [21].

The IDE makes use of multiple

versions of parse trees so that

age of any section can be calcu-

lated.

 Many similar visualisations

can be achieved by colouring

lines of code according to a

metric. In [13], we describe

Figure 106: Code age editor

www.manaraa.com

161

SeeSoftLike, an experimental visualisation that deco-

rates code with metrics including code age. See-

SoftLike follows the approach of Eick et al. [30] by al-

lowing code to be shown in a miniscule font so that the

observer can gain a broader perspective at the cost of

diminished detail. Figure 107 shows a screen-shot, in

which lines of code are coloured to indicate their author

(the programmer who most recently edited them).

‘Showing the tracks’ of authors in this way is a new and

potentially very helpful perspective in a collaborative

project. It requires our model to be supplemented by au-

thor information associated with parse tree nodes. This

extra information is recorded by the IDE.

 The file supplied to SeeSoftLike contains (groups of)

lines of code, their associated metric values, and meta-

data describing the metrics. The range of metrics avail-

able in the example file is evident in the pop-up dialog

on the right of the figure. Most of these are conventional size, complexity or coupling met-

rics that can be calculated from data in our model. Supplementary information is required

for the code age and author visualisations discussed above, and for the defects visualisation,

which shows the number of defects that have been found in a region of code and thereby

suggests to programmers the level of care appropriate when editing that code.

SeeSoftLike supports side-by-side displays of different metrics so that they may be com-

pared and perceived in concert. Users may configure the criteria used to map metrics to col-

ours, in order to colour only regions with more than ten defects, for example. To assist with

browsing code, a simple focus plus context technique is used: the cursor may be hovered

over a line to elicit a ‘tool tip’ naming that code section (as shown for the getMin() method

in Figure 107). Full code details can be revealed by expanding the font to a legible size.

Many more useful metrics might be grafted onto source code displays. For instance, we

might highlight method invocations and variable uses, adjusting the intensity of highlighting

to show the degree of coupling to the component being accessed. Information hiding [85]

Figure 107: SeeSoftLike

www.manaraa.com

162

might be emphasised by decorating attributes and methods according to their access levels,

breadth of scope, or number of places in which they are actually used. A developer might

switch between visualisations (or combinations of them) as different design forcers were

considered.

The use of tiny fonts in SeeSoftLike allows metrics that convey detailed, concrete aspects

of code to be perceived on a broader scale and to work in a more approximate, holistic way

that they otherwise would. The user can form an overall impression of the amount of col-

laboration in authorship of a module or the distribution of defects across a module. Side-by-

side views of these two metrics could suggest to the observer relationships between authors

and defect rates.

An extension of this code-centric visualisation approach would display not just measures of

program features, but would flag problems suggested by design heuristics, code smells, local

design policies and other constraints derived from metrics and observations of the model.

One possible visual presentation of these heuristic checks would be similar to MS Word’s

grammar checker, which uses a green underline to indicate possible problems, and a pop-up

dialog box to provide details. Although we have not (yet) created this user interface, we

have developed a tool that detects heuristics violations based on metrics from a semantic

model (derived from JST) [12]. It audits the model, checking for cyclic dependencies be-

tween packages [69], inheritance hierarchies that have grown too deep, overlarge classes,

and similar warning signs [93]. A recent study shows other authors [73] are experimenting

with exactly this style of tool using semantic model data acquired from Eclipse’s JDT (which

we discussed in Chapter2), with encouraging results.

An alternative representation of software structure that is familiar to many software develop-

ers is UML, and this too offers a promising substrate for visualising metrics. We might high-

light cyclic dependencies on a package diagram, for example. In a class diagram, we might

make inheritance relationship lines thicker to represent the number of subclasses, colour

methods to show their size, and so on. An example of embellishing a class diagram with

metrics—by making the thickness of class borders proportional to ClassRank—is provided

in [77]. (ClassRank will be described in Section 6.3.1.)

www.manaraa.com

163

We have not yet developed these UML-centric visualisation ideas beyond simple prototypes,

although we foresee no great difficulty in using our model in this way and expect to do so in

the future. We have chosen initially to investigate more experimental visualisations using

3D virtual worlds, as they escape the prescriptive structures of source code and UML nota-

tion and allow us to construct frameworks using semantic concepts that, we hope, can more

closely match designer’s mental models.

It is an open question whether the advantages of more abstract semantic visualisations out-

weigh the problems introduced by using some unfamiliar alternative representation of pro-

grams. Experienced software developers are adept at mapping source code and UML to

mental models despite the difficulty of the task, and are not experienced with 3D representa-

tions of software. Indeed, designers’ current mental models are likely to be heavily influ-

enced by current software representations including source code and UML, and so new al-

ternatives are at a disadvantage.

Similarly, the relative merits of 3D visualisations of software over more traditional 2D ones

are a matter for more research. Three dimensional visualisations introduce issues of occlu-

sion and navigation beyond those encountered in two dimensional representations. It is,

however, conceivable that occlusion and 3D perspective can sometimes be used to advantage

to hide (or shrink) details that are unimportant from some vantage points, or that improve-

ments to fluidity of navigation and manipulation of models will reduce these problems.

More fundamentally, the question of what software looks like has not been finally answered

by source code and UML. We don’t try to answer these questions here, but instead seek to

show that our modelling approach provides a viable basis for experimentation with metrics

and visualisations.

www.manaraa.com

164

6.2 Pipeline architecture

We use a pipeline architecture [6] for transforming source code

into metrics and visualisations, as shown in Figure 108. A pipeline

is a series of filters that each read data from an input file (or data

stream) and write data to an output file (or stream). The initial in-

put to the pipeline is source code and the final output is a visualisa-

tion file in some format suitable for rendering, typically VRML [8]

in our work. All intermediate files throughout the pipeline use

XML.

The production of software visualisations is, in general, an intricate

process involving many intermediate stages, each with a different

role and employing different data structures and algorithms. A pipeline is well suited to this

problem [94]. Our approach contributes the use of XML as the medium for data representa-

tion, and provides features specifically targeted at software visualisation, including our static

analysis technology.

Artefacts employed in our pipeline include:

• Source code to be analysed.

• Scanners that recognise tokens in source code.

• Grammars for specifying the syntax of source code and the corresponding structure

of parse trees.

• Parse trees that describe the syntactic structure extracted from sequences of tokens.

• Automata that describe a mechanism capable of parsing a given language.

• Generated parsers that execute an automaton to translate source code into parse trees.

• Semantic models that represent semantic entities and relationships extracted from

parse trees.

filter

source code

visualisation model

filter

filter

filter

write
XML

read
XML

...

Figure 108: Pipeline
input and
output

www.manaraa.com

165

• Metric utilities that produce measurements of parse trees and semantic structures.

• Transformed models that contain filtered, clustered, or derived forms of the raw

models. A single visualisation may involve a variety of transformed models.

• Visualisation models that represent software structure after some visual metaphor has

been applied.

• Geometry computation and layout algorithms.

• Mappings that configure visualisations by describing how various features are to ap-

pear.

• Visualisation data such as VRML files that describe the resulting visualisation.

Exploratory development of new visualisations requires creative involvement of a user to

specify what information is relevant, how it should be transformed, and how it should ap-

pear. Re-processing of some stages is often necessary as decisions are revisited, tools cali-

brated and variations tried. Further, different parts of the process may be the responsibility

of different developers, and may use different programming languages or technologies. This

situation calls for a flexible approach that decouples the stages of visualisation development

and provides opportunities for the user to evaluate intermediate and final results and to re-

configure components as necessary.

A pipeline affords a high degree of flexibility because filters are coupled only by external file

formats, allowing the filters to be independently developed, employ differing technologies,

and be composed in diverse ways. Pipelines may branch, merge and contain cycles. This

flexibility is particularly helpful for experimenting with metrics and visualisations, as dis-

coveries gained from the pipeline can influence its subsequent development.

www.manaraa.com

166

Figure 109 presents a typical pipeline, and Figure 110

shows excerpts of XML files produced in the data acquisi-

tion portion of the pipeline. (We defer fuller discussion of

the metrics and visualisation portion to Sections 6.3 and 6.4

of this chapter.) The steps in the example are:

• A parser transforms source code by adding XML

tags that describe the parse tree. The original

source text is retained between the tags. Figure 110

(a) shows a fragment of the Java grammar and (b)

gives example code corresponding to that part of

the grammar. Part (c) of the figure shows the con-

sequent parse tree fragment. The tags in the parse

tree XML originate from symbols in the grammar,

while the text originates from the source code.

• JST transforms a set of individual parse trees into

an integrated semantic model. The XML output file

includes the original parse trees and a separate

XML sub-tree that describes the semantic concepts

and links them to each other and the parse trees.

Figure 110 (d) shows a fragment derived from our

example parse tree. Parse tree nodes now contain

identifiers so they may be referenced from the se-

mantic model.

• Any number of metrics filters may be used to aug-

ment the model with tags describing observations.

As we remarked earlier, these filters may access the model as an XML file (perhaps

via XSLT), or may load the model into memory and use its API (including visitors) if

that is more convenient; different filters will have different needs.

• The remaining steps transform the augmented model into a visualisation. A pre-

layout filter selects the concepts, relationships and attributes to be visualised. In the

parser

JST

source code

parser parser

source code source code

parse tree parse tree parse tree

semantic model

metric filter

augmented model

pre-layout filter

conceptual model

layout filter

3D model

post-layout filter

visualisation model

visualisation tool

Figure 109: Pipeline example

www.manaraa.com

167

example, the filter selects classes and methods as nodes to be visualised, and class-

contains-method and method-invokes-method as relationships. The filter outputs

NGML, an XML format for describing graphs. Fig Figure 110 (a) shows the format.

• A layout filter computes the geometry of the visualisation. For 3D visualisations we

typically use ANGLE, an inhomogeneous force-directed layout engine developed by

the SEVG research group [14].

• A post-layout filter maps features of the 3D model to visual forms. For example,

method nodes are ascribed shape, colour, size and transparency. Post-layout filters

are concerned only with the appearance of visualisations; they decorate a structure

// 19.8.3) Method Declarations

<method_declaration> ::=
 <method_header> <method_body>
 ;

<method_header> ::=
 <method_modifiers>? <result_type> <method_declarator> <throws>?
 ;

<result_type> ::=
 <type>
 | VOID
 ;

<method_declarator> ::=
 IDENTIFIER LPAREN <formal_parameter_list>? RPAREN
 | <method_declarator> LBRACK RBRACK
 ;

(a) Grammar

public abstract class TypedDecl extends Decl {

 protected TypeDecl type;

 public TypedDecl(Scope theOwner,
 String theSimpleName,
 Nonterminal theSource) {
 super(theOwner,
 theSimpleName,
 theSource);
 }
 // ...
}

(b) Source code

<method_declaration>
 <method_header>
 <method_modifiers>
 <method_modifier>
 <token id='PUBLIC'>public</token>
 </method_modifier>
 </method_modifiers>
 <result_type>
 <reference_type>
 <class_or_interface_type>
 <class_type>
 <type_name>
 <token id='IDENTIFIER'>TypeDecl</token>
 </type_name>
 </class_type>
 </class_or_interface_type>
 </reference_type>
 </result_type>
 <method_declarator>
 <token id='IDENTIFIER'>getType</token>
 <token id='LPAREN'>(</token>
 <token id='RPAREN'>)</token>
 </method_declarator>
 </method_header>
<method_body>
...

(c) Parse tree

...
<method id='MTH_jst.symtab.TypedDecl.getType()' name='getType()'
 source='NTL_53719'
 type='TYP_jst.symtab.TypeDecl' modifier='public'>
 <block id='BLK_jst.symtab.TypedDecl.getType().@BODY'>
 <reference to='FLD_jst.symtab.TypedDecl.type' from='NTL_53694'/>
 </block>
</method>
...
<nonterminal id='NTL_53719' type='method_declaration'>
 <nonterminal id='NTL_53691' type='method_header'>
 <nonterminal id='NTL_53682' type='method_modifiers'>
 <nonterminal id='NTL_53680' type='method_modifier'>
 <terminal type='PUBLIC'>public</terminal>
 </nonterminal>
 </nonterminal>
 <nonterminal id='NTL_53687' type='result_type'>
 <nonterminal id='NTL_53686' type='reference_type'>
 <nonterminal id='NTL_53685' type='class_or_interface_type'>
 <nonterminal id='NTL_53684' type='class_type'>
 <nonterminal id='NTL_53683' type='type_name'>
 <terminal type='IDENTIFIER'>TypeDecl</terminal>
 </nonterminal>
 </nonterminal>
 </nonterminal>
 </nonterminal>
 </nonterminal>
 <nonterminal id='NTL_53689' type='method_declarator'>
 <terminal type='IDENTIFIER'>getType</terminal>
 <terminal type='LPAREN'>(</terminal>
 <terminal type='RPAREN'>)</terminal>
 </nonterminal>
 </nonterminal>
 <nonterminal id='NTL_53718' type='method_body'>
...

(d) JST model

Figure 110: Pipeline XML files

www.manaraa.com

168

built by earlier filters. This separation of concerns affords a high degree of flexibil-

ity, allowing easy customisation of visualisations’ appearance.

The use of XML in the pipeline offers several advantages over approaches that depend on

monolithic tools or less transparent data formats [50]. XML is text based and easily read.

The files are self-describing because they contain their own metadata, and so encapsulate all

information that couples filter programs in one place.

Transformation of XML is well supported by existing tools, including XSLT. XSLT applies

a stylesheet to an XML file, transforming the data into a new format—usually, but not neces-

sarily, another XML file. Stylesheet-driven transformations are a powerful mechanism for

obtaining configurable filters in the pipeline, particularly for pre-layout and post-layout fil-

ters and many metrics calculations. In other filters, where general-purpose programming

languages have advantages over XSLT, support for reading and writing XML files is widely

available. We typically use DOM and SAX [41].

6.3 Metrics calculation

Many metrics can be derived directly from information extracted from a JST model. Simple

counts such as number of classes, number of methods for each class, and number of parame-

ters for each method, are common examples. These metrics use the same containment rela-

tionships found in code (classes contain methods, which contain parameters), but other rela-

tionships in the model are equally valid subjects for metrics, yielding measures such as num-

ber of supertypes (classes and interfaces) and subtypes, number of declarations that use each

type, number of invocations of each method, fan-in and fan-out of methods, and so on. Fol-

lowing chains of relationships allows us to accumulate transitive measures such as depth of

classes in the inheritance tree, number of inherited attributes, number of methods invoked

indirectly, etc.

The metrics mentioned above are all defined in terms of semantic concepts, but syntactic and

even lexical metrics are also supported. Parse trees are retained in the JST model, with parse

tree nodes linked to the semantic objects they describe. In turn, parse trees contain tokens,

which are chained together so that the original program text—including whitespace—is re-

www.manaraa.com

169

trievable. Metrics filters may traverse the connected data structures to calculate, for instance,

lines of code (a lexical metric) or cyclomatic complexity (syntactic) for each method.

Because complete parse trees are stored, every object in the semantic model is connected to

the syntactic representation from which it was derived. For example, a semantic object rep-

resenting a class is linked to its class declaration in a parse tree. We might therefore measure

some characteristics of a program by defining either a semantic or a syntactic variant of a

metric. Number of classes might be defined as a count of class objects or of class declara-

tions. In general, the semantic version is preferable as it is defined at a higher level of ab-

straction (independent of syntactic details) and participates in semantic relationships that are

not evident in parse trees. In the example of counting classes, a syntactic metric might fail to

detect anonymous inner classes that are declared implicitly within constructor invocations,

whereas the semantic alternative would detect all classes regardless of their declaration syn-

tax.

The lowest level unit of a program represented in our semantic model is a block (statements

within a pair of braces). Blocks are part of the semantic model because they define scopes,

and so are necessary for resolving name look-ups. Blocks contain statements, which are not

modelled as JST objects because they do not define entities that may be referenced in any

way other than that already captured by the syntactic structure. Because statements are rep-

resented only in parse trees, metrics involving statement features (cyclomatic complexity, for

example) must be defined syntactically; that is, in terms of parse trees. Expressions, which

usually occur within statements, are a similar case, except that whenever any expression uses

a semantic concept a semantic relationship is recorded from the containing semantic entity

(usually a block) to the referenced semantic model object. Method invocations and variable

accesses are examples. Each relationship is associated with the parse tree node of the ex-

pression that produced the reference.

Precise definition of metrics is necessary if results are to be interpreted correctly [17]. Even

straightforward metrics such as the examples above require elaboration. When counting

methods, for example, we must answer questions such as:

• Are constructors counted? If so, are compiler-generated default constructors also in-

cluded?

www.manaraa.com

170

• Are private, protected and/or package methods counted? What about static methods

and abstract methods?

• Do overloaded methods count singly or multiply?

• Are inherited methods included? If so, are private methods considered as inherited?

Should overridden methods count multiply or singly? Are method signatures in in-

terfaces counted separately from their implementations? How should a single

method signature inherited from multiple interfaces be counted?

Clearly, answering these questions in different ways could lead to very different metric val-

ues, which in the absence of a precise metric definition, would allow few safe conclusions to

be drawn. Unfortunately, a lack of disclosure of metrics definitions and implementation

techniques has been a hallmark of much metrics literature and tools.

We contend that one reason for this deficit has been the lack of reference models that supply

terms by which metrics may be defined, compounded by the lack of available data consistent

with the models. Our approach allows metrics to be defined and calculated in terms of the

semantic concepts of the language and its underlying grammar. Questions like those above

can be answered using the same semantic and syntactic terms, yielding metrics definitions

and data with a degree of precision that has been lacking in many other approaches. The im-

proved rigour of this approach enables reliable interpretation and comparison of results.

The actual mechanics of metrics calculation are unsurprising. XSLT stylesheets [59] can

produce many direct measurements of model features. Alternatively, metrics can be calcu-

lated by a program that reads a JST model into

memory and uses the visitor design pattern [35]

to walk through the model and accumulate val-

ues. Figure 111 shows the number of methods

metric (in its simplest form) implemented in

Java by subclassing the ModelVisitor pro-

vided with JST. ModelVisitor provides a de-

public class NOMVisitor extends CompositionVisitor {

 protected Map counts;

 public NOMVisitor() {
 counts = new HashMap();
 }

 public void visitMethodDecl(MethodDecl methodDecl) {

 Scope owner = methodDecl.getOwnerScope();

 Integer count = (Integer) counts.get(owner);
 if (count == null)
 count = new Integer(1);
 else
 count = new Integer(count.intValue() + 1);

 counts.put(owner, count);
 }

 public Map getResult() {
 return counts;
 }
}

Figure 111: Number of methods visitor

www.manaraa.com

171

fault navigation implementation that follows the containment hierarchy of the Model.

The inheritance structure of the JST model facilitates definition and calculation of many met-

rics. The hierarchy captures commonalities of concrete classes at successively more abstract

levels. For example, ClassType and InterfaceType share a common superclass, User-

Type. Metrics that measure some feature shared by classes and interfaces—number of

methods, for instance—need not distinguish between the concrete types, but can simply

work with the UserType abstraction. Similarly, metrics can be defined for other abstractions

such as scopes, declarations, operations (methods and constructors), variables (local, fields,

parameters), and others without concern for their specialisations.

CFG-based parse trees also exhibit a hierarchical nature that aids metrics production. We

can, for example, count instances of statement nonterminals without regard for the type of

statement. We might alternatively count only assignments or switch_statements. This sort

of syntactic generalisation, while useful, is less robust than the generalisation represented by

object-oriented inheritance because it reflects only syntactic commonalities considered im-

portant by the grammar designer, rather than deeper semantic generalisations. In the case of

the Java exposition grammar, a simple count of equality_expressions, for example, might

produce a surprising result because the syntax is defined so that other expression types such

as additive_expressions are reduced as equality_expressions and would also be counted.

6.3.1 CodeRank

So far, the metrics we have discussed require only traversal of a model while counting fea-

tures. Of course, metrics thus produced might be averaged, aggregated, combined to find

ratios, correlated and so on. A broad range of valuable metrics can be calculated in this way.

Metrics, however, need not measure only program attributes directly represented in the

model, but may depend on further static analysis and derived data structures. We have de-

veloped a new family of metrics known as CodeRank that demonstrates this more elaborate

approach [77]4.

4 This paper received the best research paper award at ASWEC06.

www.manaraa.com

172

CodeRank is inspired by the idea behind Google’s pagerank algorithm [81] and applies it to

software structure. Pagerank models the World Wide Web as a graph in which nodes are

web pages and edges are hyperlinks, and ascribes to each page a rank derived from the to-

pology of the graph. Each page shares its own rank equally along outgoing edges to target

pages. The algorithm propagates rank incrementally and uses a damping factor to ensure it

converges on stable values. The result is a ranking of web pages by their importance in the

structure of the graph. This information has proven very valuable in the context of internet

search engines.

CodeRank takes a similar approach to ranking software components: the components are the

graph nodes and their relationships the edges. Rankings are found iteratively. Unlike pager-

ank, which treats all web pages and all hyperlinks homogeneously, we broaden the concept

to support heterogeneous types of nodes and relationships. A heterogeneous graph allows us

to model the various component types found in software such as packages, classes, methods

and attributes, and permits us to apply different weightings to the various relationship types.

In this way we can ascribe greater importance to some relationships. For example, we might

weight inheritance relationships more heavily than association relationships.

By choosing the types of nodes and edges that participate in a graph, we can produce a vari-

ety of rankings. PackageRank, ClassRank and MethodRank are members of the CodeRank

family produced by restricting nodes to packages, classes and methods, respectively. (Or

alternatively, by aggregating the ranks of sub-components—see [77] for details.)

Figure 112 is a screenshot of CodeRanker, our implementation of CodeRank5. The screen

shows a tab for configuring ClassRank. The sliders allow weightings of relationship types to

be individually adjusted. A checkbox allows method overriding to be incorporated in the

calculation, by adding to the graph edges to all methods that override an invoked method.

The resulting class ranks appear at the bottom of the screen.

Figure 113 uses parallel coordinates to show the results of calculating ClassRank for several

successive versions of an open source Java project (ANTLR). Horizontal lines show

5 CodeRanker was implemented primarily by Blair Neate under the author’s supervision.

www.manaraa.com

173

changes to a class’ rank as

the code evolves. Many

lines show a downward

trend, suggesting that

classes have been refactored

to more evenly distribute

functionality around the sys-

tem.

CodeRank illuminates a di-

mension of software not

shown by existing software

metrics. Like its progenitor

pagerank, it indicates the

relative importance of com-

ponents within the structure.

Software engineers have

conventionally been forced to rely on more circumstantial indicators of component impor-

tance, such as measures of size (often measured by LOC), complexity or coupling. CodeR-

ank can be used in conjunction with these traditional metrics to better characterise compo-

nents, so for example we might recognise components as small-but-important, or complex-

Figure 112: CodeRanker

Figure 113: ClassRank parallel coordinates graph

www.manaraa.com

174

but-less-important, and so on.

Figure 114 plots metrics for the classes in a small program called Aliens (a simulator of

alien abductions, originally developed as a design patterns teaching resource). Parts (a) and

(b) show relationships between conventional metrics: LOC and cyclomatic complexity in the

first case, WMC and cyclomatic complexity in the second. The strong correlations with oc-

casional outliers evident in the graphs are characteristic of most software, and indicate that

the metrics reflect non-orthogonal dimensions of the program. Parts (c) and (d) of the figure

plot our ClassRank metric against cyclomatic complexity and WMC, respectively. The met-

(a)

(b)

(c)

(d)

Figure 114: Aliens program metrics

www.manaraa.com

175

rics are not correlated, indicating that the quality measured by ClassRank is distinct from

these other metrics.

These graphs serve a purpose beyond merely showing that ClassRank measures something

different. By combining metrics in this way, we can observe program features that might

otherwise not be evident. We can distinguish regions of the graphs in (c) and (d) that contain

classes with common characteristics. Classes at the top right (Person and UFO) have high

functionality. They are highly ranked because they do a lot. Classes at the top left (Experi-

ment and Invader) are small utilities and high-level abstractions. They are highly ranked

because they are used a lot. The remaining classes in the graphs are of only modest impor-

tance and average size/complexity.

The central regions of the graphs are empty, indicating the absence of highly important

classes with only moderate size/complexity. If classes were to appear in this region, they

might be considered as candidates for refactoring by identifying missing abstractions.

We expect CodeRank to prove valuable in a range of software engineering situations.

Highly ranked classes are those which are most pivotal to the design and provide the most

widely used services. They are consequently good candidates for early attention when trying

to understand a body of unfamiliar code, and provide important vocabulary for understand-

ing the rest of the design. Similarly, high rank suggests that correspondingly high effort

might be directed when maintaining, refactoring or extending code, and when developing

unit tests.

CodeRank is also beneficial for understanding actual levels of software reuse. Reuse is a

perennial theme of OO software development but has proven difficult to achieve in practice.

Consequently, the ability to detect and measure reuse is an important capability. Existing

metrics can capture simple, direct forms of reuse [89], but more subtle and indirect cases

have remained challenging [106]. CodeRank can be configured to capture varieties of reuse,

including reuse through inheritance. The transitive nature of the metric produces a holistic

view of system-wide reuse, rather than showing just the proximate causes of reuse.

CodeRank is an example of a metric that cannot be calculated without a rich semantic model

such as JST. It relies upon an assortment of semantic relationships, including resolved

method invocations, which are not available from tools that lack a full set of features includ-

www.manaraa.com

176

ing fully scoped name look-ups and the ability to determine the type of expressions used as

parameters.

Although the Aliens example we have described is a “toy” system, CodeRank has been

shown to perform well on a large corpus of real Java software.

6.4 Generating virtual world visualisations

Our approach to visualising software using virtual worlds has been documented in a number

of papers [49], [50], [13]. We summarise the main points here (reproducing several figures)

and refer the reader to the relevant papers for details.

Off the shelf technology for displaying virtual worlds is readily available. We make use of

VRML to describe virtual worlds and web browser plug-ins to display them. Virtual worlds

provide an opportunity to display large volumes of multivariate information in a form that

allows intuitive perception and exploration across a range of scales [88]. By visualising

software structures and metrics with virtual worlds, we hope to provide the viewer with per-

spectives that show many facets of software in concert, and so to encourage insights that are

not prompted by conventional views.

Software lends itself naturally to graph-based visualisations, because the underlying seman-

tic concepts inherently form a graph consisting of heterogeneous nodes. JST models such a

graph, although without visual form. Humans are adept at perceiving and manipulating real

3D objects, and with the advent of virtual world technology, the potential of 3D graph-based

(and other) software visualisations deserves research.

In the same way that our SeeSoftLike 2D visualisations allow metrics to be perceived on a

broader, less detailed scale, our 3D virtual worlds can show high-level vistas of metrics data.

Our virtual worlds take this idea further by combining a variety of structures and metrics into

one view, whereas SeeSoftLike shows only one structure—lines of code—and requires

separate views for different metrics. The result is a more holistic, integrated view that sup-

ports subjective judgements about aspects of software designs such as size, coupling, central-

ity, complexity, encapsulation and so on. For example, we might devise a visualisation to

www.manaraa.com

177

convey insights into the balance of competing forces in a system such as the number of com-

ponents, the size of their interfaces and the complexity of their implementations.

Figure 115 shows a more detailed example of the visualisation section of the pipeline. Two

alternative pre-layout filters are shown, driven by different stylesheets. Pre-layout

stylesheets specify the content of the visualisation, independent of its appearance. For ex-

ample, we might produce a graph of classes and methods linked by inheritance, containment

and invocation relationships, or a graph of the program scope structure. Features may be se-

lected here for their role in layout, as well as in the final visualisation. For example, we of-

ten add relationships to ensure the graph is connected and will therefore be laid out in a con-

tiguous space.

Layout of graphs ascribes an artificial geometry to conceptual entities and positions them in

space. Layout of two dimensional graphs has been addressed by other researchers—[25], for

example—but 3D layout presents an additional challenge. In Figure 115 layout is performed

by ANGLE [11], which uses an original 3D inhomogeneous force-directed approach. A

configuration file defines pa-

rameters for the layout algo-

rithm, including setting the

spring strengths for different

relationship types [14].

Finally, Figure 115 shows sev-

eral post-layout stylesheets be-

ing applied in order to map con-

cepts in the 3D model to visual

forms with shape, size, colour

and orientation. Different post-

layout mappings typically em-

phasise different features of the

model or show metrics in dif-

ferent ways.

augmented model

XSLT

conceptual model

angle

3D model

visualisation model

stylesheet stylesheet

configuration

XSLT

conceptual model

angle

configuration

3D model

XSLT

stylesheet

XSLTXSLT XSLT

stylesheetstylesheet

visualisation model

visualisation model

pre-layout
filter

post-layout
filter

layout
filter

visualisation model

Figure 115: Visualisation filters in the pipeline

www.manaraa.com

178

 Figure 116 uses a simple example to illus-

trate this process, including the effects of

selecting different sets of relationships to

participate in a visualisation. The purpose

of this type of visualisation is to show class

cohesion, in the spirit of the LCOM metric,

which is based on the idea that methods

should tend to use multiple attributes of

their own class. This idea is expressed by

Riel as heuristic 4.6: “Most of the methods

defined on a class should be using most of

the data members most of the time.”

However, some controversy about the va-

lidity of the idea has arisen [42]. Our visu-

alisation approach allows us to explore and clarify the issues.

Each of the four parts of the figure shows the same conceptual model containing one class

with three attributes and three methods (a purple cylinder, three green cubes and three red

spheres, respectively). In parts (a), (b) and (c) the pre-layout filter included all relationships,

resulting in the same layout in each. The post-layout filter for (a) made all relationships visi-

ble. The post-layout filter for (b) omitted class-contains-method relationships, and for (c)

omitted the class and all its relationships. Part (d) is laid out differently, because the pre-

layout filter excluded class-contains-method relationships. Consequently methods have

moved further from the centre. The post-layout filter for (d) is the same as for (a); that is,

showing all relationships.

(a)

(b)

(c)

(d)

Figure 116: Class cohesion variations

www.manaraa.com

179

In Figure 117 we apply

the same sets of filters to

another class, this one

contrived to exhibit low

cohesion, as it might if it

should be refactored into

two classes. Strategies

(c) and (d) in both figures

are more promising for

revealing low cohesion.

Examples of a real class

visualised with these two

strategies appear in

Figure 118. Both vari-

ants readily show that the

methods tend to cluster around individual attributes, rather than using a substantial fraction

of the available attributes. This characteristic proves to be very common, and perhaps raises

questions about the assumptions behind LCOM and Riel’s heuristic 4.6; or at least provides

data with which to calibrate its interpretation.

Static images of virtual worlds communicate 3D structure much less effectively than interac-

tive 3D browsers that support movement of (or through) the model. We typically view our

virtual world visualisations using a VRML web browser plug-in such as Cortona

(www.parallelgraphics.com),

shown in Figure 119.

Virtual worlds are well suited to

more immersive platforms, such

as the Magic Book™ [4], shown

displaying a cohesion model6 in

Figure 120, CAVE environments

6 Photograph by Eric Woods (HIT Lab NZ).

(a)

(b)

(c)

(d)

Figure 117: Separable class

(strategy c)

(Strategy d)

Figure 118: Real class cohesion

www.manaraa.com

180

like that of Virginia Tech (http://www.cave.vt.edu) in Figure 121, and the UC GeoWall in

Figure 122. The CAVE is displaying a galaxy of class cohesion models and allows ‘flying’

around them. The GeoWall shows a class cluster visualisation described in the next section.

These more ambitious virtual environments help to overcome limitations of conventional

visualisation approaches.

Figure 119: VRML browser

Figure 120: Magic book

Figure 121: VT CAVE (console)

Figure 122: UC GeoWall

www.manaraa.com

181

6.4.1 Class Clusters

We have extended our 3D graph-based visualisation approach with a new visualisation

called class clusters, intended to depict coupling between classes. Figure 123 shows an ex-

ample class cluster virtual world visualisation [49] produced by the pipeline. The software

being visualised is JST itself. The large spheres are classes, with diameter proportional to a

class size metric. Inheritance relationships are shown as (red) cylindrical rods with a cone

indicating direction of the superclass. The diameter of each inheritance cylinder is propor-

tional to another metric: the number of subclasses directly or indirectly inheriting via that

relationship. This helps to convey the relative importance of these relationships in the inheri-

tance structure. ‘Pinheads’ on the surface of classes represent public methods. They are

connected by (yellow) invocation lines.

The overall shape of the class cluster reflects the net forces of the relationships, with inheri-

tance more rigid than invocations. Heavily coupled classes are drawn together and classes

that are connected to many others are pulled into the centre of the graph. In the figure, the

Figure 123: Class cluster

www.manaraa.com

182

Decl class occupies a central place, indicating its centrality to the design. (Unsurprisingly,

Decl also ranks highly using our CodeRank metric.) A counter-example is provided by Sym-

bolTable, which is outside the main inheritance hierarchy and has a more peripheral role in

the design.

 In the foreground of the figure,

TypedDecl and OperationDecl

are notably contrasting in form.

TypedDecl is small and little

used—it provides little functional-

ity—but it plays an important role

as a supertype of many classes.

OperationDecl, on the other hand

plays a lesser role as a supertype,

but is much more substantial and

more heavily coupled.

Figure 124 and Figure 125 show

class clusters with additional met-

ric decorations. Method ‘pin-

heads’ have been replaced with

cones, whose heights correspond

to method length and widths to

method complexity. The first fig-

ure orients all method cones verti-

cally, while the second orients

them radially around their class.

Although the metric mappings are

essentially the same, the appear-

ance is quite different and there is

less occlusion in the latter figure.

As we have noted, the focus of this

thesis is on facilitating software

Figure 124: Class cluster with method cones

Figure 125: Class cluster with method spikes

www.manaraa.com

183

engineering tools such as the metrics and visuali-

sation applications described above, rather than on

evaluating metrics and visualisations themselves.

We do not discuss application details further here,

but the interested reader is referred to our visuali-

sation papers such as [49], [50], [13] and [15].

6.4.2 Other applications

The examples described above use the pipeline to

produce 3D graph-based visualisations delivered by VRML. We do not mean to suggest,

however, that the pipeline is constrained to these types of visualisation or delivery technol-

ogy. Members of SEVG have used the visualisation pipeline to generate—from the same

semantic model type—a variety of visualisation styles. These include conventional 2D

graphs, 2D TreeMap visualisations [53], a new 3D (VRML) TreeMap [15], alternative 3D

metaphors, and Java 3D presentation in place of VRML. Figure 126 shows a 3D TreeMap

of the Number Of Children (NOC) metric for classes in a small system. Figure 127 shows a

Debugs visualisation developed by Sarah Frater, which presents each class as a metaphorical

bug, whose characteristics are derived from several metrics.

While a pipeline is a useful vehicle for our

modelling tools in many applications, it is

not mandatory. Cook’s IDE (discussed

earlier) uses the model directly as a library.

The IDE is a substantial application that

places heavy demands on the model. Its

ability to withstand that load provides evi-

dence the implementation is sound.

We continue to find new applications for

our modelling technology and expect to

initiate many more projects based on the

static analysis foundation we have built.

Figure 126: NOC 3D TreeMap

Figure 127: Debugs

www.manaraa.com

184

C h a p t e r 7

Conclusions and future work

7.1 Conclusions

As software continues to increase in size and complexity, software engineers need better

tools to help them understand and develop their products. Static analysis is a key component

of software engineering tools: it is the primary means by which they acquire information

about software structure. This thesis describes improvements to static analysis technology

and demonstrates these improvements in a range of example applications.

Today, any software engineering researcher or practitioner who wishes to build a new tool is

confronted with an immediate obstacle: it is difficult to acquire complete, high quality data

sets capable of representing the complex multifaceted nature of software. Existing sources

of software structure information, such as reflection and IDE repositories, usually were not

designed for the single purpose of producing high-fidelity representations of the complete set

of software features, and so are likely to impose compromises on developers of new tools.

Tool builders may choose instead to develop their own models by parsing and semantically

analysing source code, but this too presents difficulties if current approaches are used.

Parsing is a fundamental static analysis activity for all software represented as source code.

Although parsing theory is mature and largely complete, the application of parsing theory to

www.manaraa.com

185

practical software engineering problems is less so. Conventional parsing wisdom holds that

LALR(1) is the most suitable algorithm for generating parsers of programming languages.

We find that in applications where conformance to a standard grammar is important, use of

LALR(1) should not be automatic, and that a range of LR parsing algorithms up to and in-

cluding GLR can be employed to advantage.

We have developed a new approach for generating LR parsers, and implemented it in

yakyacc. The approach uses an extended version of the GLR algorithm within the parser

generator itself to explore and modify the parsing automaton. This enables an escalating ap-

proach to parser construction, in which progressively more powerful parsing algorithms are

applied to individual states until they become adequate or cannot be improved further. The

final increment in this escalation involves state splitting to produce LR(k) states, but only

where they actually improve the recognition power of the automaton. The approach also

generates heterogeneous lookahead depths. The resulting automaton is a hybrid of the vari-

ous parsing classes used.

The use of hybrid parsing algorithms and heterogeneous k mitigates combinatorial explo-

sions that would otherwise make higher values of k in general and LR(k) for k > 1 impracti-

cal. When even these more powerful deterministic parser classes are inadequate for a given

grammar, we use GLR parsing to accommodate any CFG, including ambiguous ones, with-

out sacrificing linear performance for real languages.

Our approach integrates a number of previously separate LR parsing innovations, and yields

a parser generator with significant practical advantages over current technology. It enables a

fundamental change in the way parsers are developed: rather than modifying a grammar to

accommodate a parsing algorithm, the parsing algorithm adapts to the grammar. This

change eliminates the need for manual intervention in parser development, and allows pars-

ing to conform to standard grammars. Benefits include improved rigour of static analysis, as

well as easier parser development.

Parsing, nevertheless, does not expose the deep structure of software and for this semantic

analysis is required. We have developed a semantic modeller, JST, for the Java language.

JST models the ways in which elements of the Java type system (packages, classes, methods

and so on) are used in programs. It takes advantage of our parser’s conformance to the Java

www.manaraa.com

186

Language Specification to produce a model that has high fidelity to the specification, and this

in turn enables us to build precise tools for purposes such as metrics and visualisation. JST

records all relationships between semantic model entities, and also relates them to their syn-

tactic representations. The resulting model is a complete and accurate representation of

static software structure, exposed in a form that makes it easily accessible, open for exten-

sion and able to be applied in many ways .

JST and derived versions of it have been used in several experimental applications, including

a collaborative IDE, OO design heuristics auditor, and metrics and visualisation pipelines.

These applications demonstrate that JST can be used in real tools and can process programs

of realistic size and complexity, and can even meet the performance demands of a real-time

collaborative software engineering setting. They establish the efficacy of the approach in a

range of roles, and provide positive indicators of its robustness and scalability.

The applications we have developed using JST share a common theme: they provide infor-

mation to software engineers (and their tools) in order to enhance understanding of software

and encourage insights into how it might be improved. This goal will continue to motivate

research for the foreseeable future, and our static analysis technology can facilitate progress

by providing a sound basis for the acquisition of static software structure information.

7.2 Continuing and future work

Our semantic analysis technology is only a beginning. We are continuing to refine existing

tools and expand the range of applications based on it.

As software engineering tools mature, static analysis will increase in importance and breadth

of application. This trend is evident in higher levels of static information—notably gener-

ics—being introduced to languages like Java and C#, in the growing use of automated tools

for refactoring and code auditing, and in increasingly ambitious software tools and IDEs.

Another software engineering trend is the growth of multi-language software, and this raises

challenges and opportunities for static analysis technology.

www.manaraa.com

187

We anticipate continued advances in the fields of software metrics and visualisation, which

despite many years of research, are still in their infancy. Few metrics and visualisations for

software designers are, as yet, sufficiently enlightening to be adopted as mainstream devel-

opment practices. Our work in this area will continue to investigate metrics and visualisa-

tions that shed light on software characteristics that are relevant to designers’ decision-

making. We have conducted a number of experiments that test metrics and visualisations,

but long term studies using real software development projects are needed to clarify the

value of static analysis information to designers.

Frater [77] has taken some initial steps toward using our semantic modelling approach for

evaluating software in the light of design heuristics and maxims. Early signs are encourag-

ing, but a larger set of heuristic tests is needed, as well as effective means of communicating

results (such as the “wiggly green underline” interface proposed in Chapter 6). The system

should be tested with real users.

Some collaborators have made valuable enhancements to JST, including Huynh’s Java 1.5

extensions [76], and Cook’s support for incomplete models [19]. These improvements

should be integrated into the main version. Cook also achieved useful results by tracking

model changes over time, but the method needs further development and the potential for

new metrics and visualisations afforded by the extra dimension of time has barely been

tapped.

JST models only the Java language, but Neate [75] has derived from it a model capable of

representing the Common Type System of .NET. Huynh has added a Java-.NET mapping.

The availability of a common semantic model mapped to language-specific models raises the

possibility of metrics and visualisations that can reliably be calculated and compared across a

range of OO languages, yet can still be communicated in terms of the original languages.

Our static analysis work has so far been limited to modelling type systems. Further analysis

can build on this base. For instance, we might trace the flow of objects through methods and

expressions to determine how object interfaces are actually used. Our model also provides a

useful framework to which dynamic analysis information might be attached, yielding a more

complete picture.

www.manaraa.com

188

Yakyacc needs to undergo industrial hardening to cope with the range of conditions encoun-

tered by general-purpose parser generators. Better error handling will greatly expand the

range of settings in which it can be applied, by allowing it to work with code that has not

necessarily already been compiled. Experiments are needed to clarify the effects of longer

lookaheads and hybrid algorithms when using different grammars.

7.3 Final words

The outcome of this thesis is superior static analysis technology that facilitates development

of new software engineering tools. Several papers have been published to report the find-

ings—and many more will follow. The main contributions are:

• An elegant new LR parser generator algorithm that employs an enhanced GLR

automaton in the generator. The algorithm escalates parsing power on a per-state ba-

sis to produce hybrid automata and heterogeneous lookahead depth. This integrates

several previously separate approaches and delivers a broader range of parsers than

are used in current practice, including practical versions of powerful parsers such as

LR(k) and GLR . This leads to a fundamental change in how parsers are developed:

standard grammars can be used.

• A tool, yakyacc, that implements our parser generation approach. It also employs

XML file formats and external code generation to gain a level of flexibility that is not

found in existing parser generators.

• An approach to semantic modelling that takes advantage of standard-conformant

parsing to produce a complete, accurate representation of the way a program uses a

language’s type system, and to disseminate it to other tools.

• An implementation of our semantic modelling approach for the Java language, JST.

The model is comprehensive and conforms more faithfully to the Java type system

than existing alternatives.

• Several applications that demonstrate the value of our static analysis contributions,

including an enhanced metrics and visualisation pipeline. A very promising new

www.manaraa.com

189

family of metrics, CodeRank, and several new visualisations have been developed.

Our technology has also served as the basis for a successful Collaborative Software

Engineering research project.

These contributions advance the state of the art of software tool building, and ultimately will

help software engineers to understand and improve their products.

www.manaraa.com

190

Acknowledgments

I am indebted to my family, colleagues and friends for their support throughout my research.

I gratefully acknowledge the contributions of:

• My supervisor, Dr. Neville Churcher, who consistently provided encouragement, ad-

vice and warped humour throughout this research. His ideas are woven inextricably

into this document.

• My colleagues in the department of Computer Science and Software Engineering at

Canterbury, and especially Dr. Tim Bell, who initiated my employment and so made

this work possible.

• All of the members of SEVG whose ideas and energy helped spark mine.

• The Foundation for Research Science and Technology, for funding the formative

stages of this research with a GRIF grant.

• My delightful sons Isaac and Riley, who have never known a father free from the ob-

session of writing a thesis.

• My wonderful wife Liz, above all, who allowed me to direct my time and energy

away from her for so long.

Thank you.

www.manaraa.com

191

References

1. Aho, A.V., Sethi, R. and Ullman, J.D. Compilers, Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass., 1986.

2. Aho, A.V. and Ullman, J.D. The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, NJ, 1972.

3. Arthorne, J. and Laffra, C. Official Eclipse 3.0 FAQs (Eclipse Series). Addison-
Wesley Professional, 2004.

4. Billinghurst, M., Kato, H. and Poupyrev, I. The MagicBook-Moving Seamlessly be-
tween Reality and Virtuality. IEEE Computer Graphics and Applications, 21 (3). 6-8.

5. Bloch, J. and Gafter, N. Java Puzzlers: Traps, Pitfalls, and Corner Cases, Addison-
Wesley Professional, 2005.

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

7. Card, S.K., Mackinlay, J.D. and Shneiderman, B. Readings in Information Visualisa-
tion: Using Vision to Think. Morgan Kaufman, San Francisco, 1999.

8. Carey, R. and Bell, G. The Annotated VRML 2.0 Reference manual. Addison Wesley
Professional, 1997.

9. Chidamber, S. and Kemerer, C. Towards a Metric Suite for Object Oriented Design.
ACM SIGPLAN Notices: Conference Proceedings on Object-Oriented Programming
Systems, Languages, and Applications, 26 (11). 197-211.

10. Chomsky, N. On Certain Formal Properties of Grammars. Information and Control,
2. 137-167.

11. Churcher, N.I. and Creek, A., Building Virtual Worlds with the Big-Bang Model. in
Australian Symposium on Information Visualisation, (invis.au 2001), (Sydney, Aus-
tralia, 2001), ACS, 87-94.

12. Churcher, N.I., Frater, S., Huynh, C.P. and Irwin, W., Supporting OO Design Heuris-
tics. in ASWEC2007: Proceedings of the 2007 Australian Software Engineering Con-
ference, (Melbourne, 2007), IEEE Computer Society, 101-110.

13. Churcher, N.I. and Irwin, W., Informing the Design of Pipeline-Based Software
Visualisations. in APVIS2005: Asia-Pacific Symposium on Information Visualisation,
(Sydney, Australia, 2005), ACS, 59-68.

www.manaraa.com

192

14. Churcher, N.I., Irwin, W. and Cook, C., Inhomogeneous Force-Directed Layout Al-
gorithms in the Visualisation Pipeline: From Layouts to Visualisations. in In-
Vis.au2004 Australasian Symposium on Information Visualisation, (Christchurch,
New Zealand, 2004), 43-51.

15. Churcher, N.I., Keown, L.M. and Irwin, W., Virtual Worlds for Software Visualisa-
tion. in SoftVis99 Software Visualisation Workshop, (Sydney, Australia, 1999), 9-16.

16. Churcher, N.I. and Shepperd, M. Comment on "A Metrics Suite for Object Oriented
Design". IEEE Transactions on Software Engineering, 21 (3). 263-265.

17. Churcher, N.I. and Shepperd, M. Towards a Conceptual Framework for OO Software
Metrics. ACM SIGSOFT Software Engineering Notes, 20 (2). 69-75.

18. Conte, S.D., Dunsmore, H.E. and Shen, V.Y. Software Engineering Metrics and
Models. Benjamin Cummings, Redwood City, CA, 1986.

19. Cook, C. Ph.D. Thesis: Towards Computer Supported Collaborative Software Engi-
neering Department of Computer Science and Software Engineering, University of
Canterbury, Christchurch, 2006.

20. Cook, C. and Churcher, N.I., Modelling and Measuring Collaborative Software En-
gineering. in Proc. ACSC2005: Twenty-Eighth Australasian Computer Science Con-
ference, (Newcastle, Australia, 2005), ACS, 267-277.

21. Cook, C., Irwin, W. and Churcher, N.I., Towards Synchronous Collaborative Soft-
ware Engineering. in APSEC '04: Proceedings of the 11th Asia-Pacific Software En-
gineering Conference, (Busan, Korea, 2004), IEEE Computer Society Press, 230-
239.

22. DeRemer, F.L. Ph.D. Thesis: Practical Translators for LR(k) Languages, MIT, Cam-
bridge, MA, 1969.

23. DeRemer, F.L. Simple LR(k) Grammars. Communications of the ACM, 14 (7). 453-
460.

24. DeRemer, F.L. and Penello, J.P., Efficient Computation of LALR(1) Look-Ahead
Sets. in Proceedings of the 1979 SIGPLAN Symposium on Compiler Construction,
(Denver, CO, USA, 1979), ACM Press, 176-187.

25. Di Battista, G., Eades, P., Tamassia, R. and Tollis, I.G. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

26. Dijkstra, E.W. (ed.), On the role of scientific thought. Springer-Verlag, New York.,
1982.

27. Donnelley, C. and Stallman, R. The Yacc-compatible parser generator, Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, 1995.

28. Earley, J. An Efficient Context-Free Parsing Algorithm. Communications of the
ACM, 13 (2). 94-102.

www.manaraa.com

193

29. Eclipse Foundation. Eclipse web site, http://www.eclipse.org, 2006.

30. Eick, S.C., Steffen, J.L. and Sumner, E.E. Seesoft-a Tool for Visualizing Line Ori-
ented Software Statistics. IEEE Transactions on Software Engineering, 18 (11). 957-
968.

31. Fenton, N.E. and Pfleeger, S.L. Software Metrics : A Rigorous and Practical Ap-
proach. International Thomson Computer Press, London, 1997.

32. Fischer, G. Ph.D. Thesis: Incremental LR(1) Parser Construction as an Aid To Syn-
tactical Extensibility Department of Computer Science, University of Dortmund,
Dortmund, Germany, 1980.

33. Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley, 2003.

34. Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. Refactoring: Improving
the design of existing code. Addison-Wesley, 1999.

35. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., USA, 1995.

36. Gosling, J. The Java language specification. Sun Microsystems, Palo Alto, CA,
USA, 2000.

37. Gough, K.J. Syntax Analysis and Software Tools. Addison-Wesley, 1988.

38. Griffith, A. GCC: The Complete Reference. McGraw-Hill, 2002.

39. Grune, D. and Jacobs, C.J.H. Parsing Techniques : A Practical Guide. Ellis Hor-
wood, New York, 1990.

40. Halstead, M.H. Elements of Software Science. Elsevier North-Holland, New York,
1977.

41. Harold, E.R. Processing XML with Java: A Guide to SAX, DOM, JAXP, and TrAX.
Addison Wesley, 2003.

42. Henderson-Sellers, B. Object-Oriented Metrics: Measures of Complexity. Prentice
Hall, 1996.

43. Holmes, J. Object-Oriented Compiler Construction. Prentice Hall, 1994.

44. Holser, P. Limitations of Reflective Method Lookup. Java Report, Vol. 6, no. 8 (Aug.
2001).

45. Hopcroft, J.E. and Ullman, J.D. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Mass., 1979.

46. Huynh, C.P. Honours Project: Modelling Programming Language Semantics Using a
Common Semantic Model, University of Canterbury, 2006.

www.manaraa.com

194

47. IEEE. Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE, 1990.

48. Irwin, W. and Churcher, N.I. A Generated Parser of C++. N.Z. Journal of Comput-
ing, 8 (3). 26-37.

49. Irwin, W. and Churcher, N.I., Object Oriented Metrics: Precision Tools and Config-
urable Visualisations. in In METRICS2003: 9th IEEE Symposium on Software Met-
rics, (Sydney, Australia, 2003), 112-123.

50. Irwin, W. and Churcher, N.I., XML in the Visualisation Pipeline. in Visualisation
2001. Workshop on Visual Information Processing., (Sydney, Australia, 2001), Aus-
tralian Computer Society Inc., 59-67.

51. Irwin, W., Cook, C. and Churcher, N.I., Parsing and semantic modelling for software
engineering applications. in Australian Software Engineering Conference, (Brisbane,
Australia, 2005), IEEE Press, 180-189.

52. ISO. ISO/IEC 14882:1998(E) Programming Languages--C++, American National
Standards Institute, 1998.

53. Johnson, B. and Schneiderman, B., Tree-maps: A Space-Filling Approach to the
Visualization of Hierarchical Information Structures. in Proc. Visualization '91, (Los
Alamitos, CA, 1991), IEEE Computer Society Press, 284-291.

54. Johnson, S.C. Yacc: yet another compiler-compiler. Holt, Rinehart, and Winston,
New York, NY, USA, 1979.

55. Johnston, K. and Smith, B. Javasrc, http://javasrc.sourceforge.net, 2002.

56. Johnstone, A., Scott, E. and Economopoulos, G. Evaluating GLR Parsing Algo-
rithms. Science of Computer Programming, 61 (3). 228-244.

57. Johnstone, A., Scott, E. and Economopoulos, G., Generalised Parsing: Some costs. in
Compiler Construction, 13th Intnl. Conf, CC’04, (2004), Springer, 89-103.

58. Johnstone, A., Scott, E. and Economopoulos, G. The Grammar Tool Box: A Case
Study Comparing GLR Parsing Algorithms. Electronic Notes in Theoretical Com-
puter Science, 110. v97-113.

59. Kay, M. XSLT Programmer's Reference. Wrox, 2001.

60. Kipps, J.R. GLR Parsing in Time O(n3). in Tomita, M. ed. Generalized LR Parsing,
Kluwer, Boston, 1991, 43-60.

61. Knuth, D.E. On the Translation of Languages from Left to Right. Information and
Control, 8. 607-639.

62. Korenjak, A.J. A Practical Method for Constructing LR(k) Processors. Communica-
tions of the ACM, 12 (11). 613-623.

www.manaraa.com

195

63. Kyburg, H.E. Theory and Measurement. Cambridge University Press, Cambridge,
1984.

64. Lang, B. Deterministic Techniques for Efficient Non-Deterministic Parsers. Auto-
mata, Languages and Programming: Lecture Notes in Computer Science, 14. 255-
269.

65. Lieberherr, K., Holland, I. and Riel, A., Object-oriented programming: an objective
sense of style. in Conference on Object Oriented Programming Systems Languages
and Applications, (San Diego, California, United States, 1988), 323 - 333.

66. Lilley, J. PCCTS-Based C++ Parser Page, http://www.empathy.com/pccts, 1997.

67. Liskov, B. and Wing, J. A Behavioral Notion of Subtyping. ACM Transactions on
Programming Languages and Systems, 16 (6). 1811–1841.

68. Lorenz, M. and Kidd, J. Object-Oriented Software Metrics. Prentice Hall, 1994.

69. Martin, R.C. Granularity. C++ Report, 8 (10). 57-62.

70. McCabe, T.J., A Complexity Measure. in International Conference on Software En-
gineering, (San Francisco, California, United States, 1976), IEEE Computer Society
Press, 308-320.

71. McCall, J., Richards, P. and Walters, G. Factors in Software Quality, Rome Air De-
velopment Center, United States Air Force, Hanscom AFB, MA, 1977.

72. McPeak, S. and Necula, G.C., Elkhound: A Fast, Practical GLR Parser Generator. in
CC04: Proceedings of Compiler Construction, (2004), 73-88.

73. Melton, H. and Tempero, E., JooJ: Real-Time Support For Avoiding Cyclic Depend-
encies. in Proc. Thirtieth Australasian Computer Science Conference (ACSC2007),
(Ballarat Australia, 2007), CRPIT, ACS, 87-95.

74. Miller, B. Catalog of Free Compilers and Interpreters, http://www.idiom.com/free-
compilers, 2006.

75. Naur, P. Revised Report on the Algorithmic Language ALGOL 60. Communications
of the ACM, 3 (5). 299-314.

76. Neate, B. Honours Project: An Object-Oriented Semantic Model for .NET, Univer-
sity of Canterbury, 2005.

77. Neate, B., Irwin, W. and Churcher, N.I., CodeRank: A New Family of Software Met-
rics. in ASWEC2006: Australian Software Engineering Conference, (Sydney, 2005),
IEEE, 369-378.

78. Nejmeh, B.A. NPATH: A Measure of Execution Path Complexity and its Applica-
tions. Communications of the ACM, 31 (2). 188-200.

79. Nicol, G.T. Flex, The Lexical Scanner Generator. Free Software Foundation, 1993.

www.manaraa.com

196

80. Nozohoor-Farshi, R. GLR Parsing for E-Grammars. in Tomita, M. ed. Generalized
LR parsing, Kluwer, Amsterdam, 1991, 60-75.

81. Page, L., Brin, S., Motwani, R. and Winograd, T. The PageRank Citation Ranking:
Bringing Order to the Web, Stanford Digital Library Technologies Project, 1998.

82. Pager, D., The Lane Tracing Algorithm for Constructing LR(k) Parsers. in Annual
ACM Symposium on Theory of Computing, (Austin, Texas, United States, 1973),
ACM Press, 172-181.

83. Pager, D. A Practical General Method for Constructing LR(k) Parsers. Acta Infor-
matica, 7 (3). 249-268.

84. Parnas, D.L., Designing Software for Ease of Extension and Contraction. in ICSE 78:
Proceedings of the 3rd international conference on Software engineering, (Piscata-
way, NJ, USA, 1978), IEEE Press, 264–277.

85. Parnas, D.L. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15 (12). 1053 - 1058.

86. Parr, T.J. Ph.D. Thesis: Obtaining Practical Variants of LL (K) and LR (K) for K
Greater Than 1 by Splitting the Atomic K-tuple, Purdue University, Layfatette, IN,
1993.

87. Parr, T.J. and Quong, R.W. ANTLR - a predicated-LL(k) parser generator. Software
Practice and Experience, 25 (7). 789--810.

88. Potanin, A., Noble, J., Frean, M. and Biddle, R. Scale-Free Geometry in OO Pro-
grams. Communications of the ACM, 48 (5). 99-103.

89. Poulin, J. Measuring Software Reuse: Principles, Practices and Economic Models.
Addison Wesley, 1997.

90. Purai, S. and Vaishnavi, V. Product Metrics for Object-Oriented Systems. ACM
Computing Surveys, 35 (2). 191-221.

91. Rekers, J. Ph.D. Thesis: Parser Generation for Interactive Environments, University
of Amsterdam, Amsterdam, 1992.

92. Resenkrantz, D.J. and Hunt, H.B. Efficient Algorithms for Automatic Construction
and Compactification of Parsing Grammars. ACM Transactions on Programming
Languages and Systems, 9 (4). 543-566.

93. Riel, A.J. Object-Oriented Design Heuristics. Addison-Wesley, Reading, Mass.,
1996.

94. Schroeder, W., Martin, K. and Lorensen, B. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Prentice Hall, 1996.

95. Spector, D. Efficient Full LR(1) Parser Generation. ACM SIGPLAN Notices, 23 (12).
143-150.

www.manaraa.com

197

96. Spector, D. Full LR(1) Parser Generation. ACM SIGPLAN Notices, 16 (8). 58-66.

97. Spence, R. Information Visualisation. Addison Wesley, 2001.

98. Stallman, R. Using the GNU Compiler Collection. Free Software Foundation, Inc.,
Cambridge, Massachusetts, 2003.

99. Stanchfield, S. and Parr, T. Parsers, Part IV: A Java Cross-Reference Tool, Mage-
Lang Institute, Java Developers Connection, 1997.

100. Tomita, M. Efficient Parsing for Natural Language. Kluwer Academic Publishers,
1986.

101. Tomita, M., LR Parsers for Natural Languages. in COLING84: Proceedings of the
10th international conference on Computational Linguistics, (Stanford, California,
USA, 1984), Association for Computational Linguistics, 354-357.

102. Tucker, A. and Noonan, R. Programming Languages: Principles and Paradigms.
McGraw-Hill, New York, 2002.

103. Unger, C.F. A Global Parser for Context-Free Phrase Structure Grammars. Commu-
nications of the ACM, 11 (4). 240-247.

104. van den Brand, M.G.J., Heering, J., Klint, P. and Olivier, P.A. Compiling Language
Definitions: the ASF+SDF Compiler. ACM Transactions on Programming Lan-
guages and Systems, 24 (4). 334-368.

105. van den Brand, M.G.J., Sellink, M.P.A. and Verhoef, C., Current Parsing Techniques
in Software Renovation Considered Harmful. in Proc. Sixth International Workshop
on Program Comprehension, (1998), IEEE Computer Society, 108-117.

106. Yang, H.Y., Tempero, E.D. and Berrigan, R., Detecting Indirect Coupling. in Austra-
lian Software Engineering Conference, (Brisbane, Australia, 2005), IEEE Computer
Society, 212-221.

107. Younger, D.H. Recognition of Context-Free Languages in Time n3. Information and
Control, 10 (2). 189-206.

108. Yourdon, E. and Constantine, L. Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Prentice Hall, Englewood Cliffs, N.J.,
1979.

109. Zuse, H. Software Complexity: Measures and Methods. de Gruyter, Berlin, 1991.

